分析 由已知可求范围α-β∈(-$\frac{π}{2}$,$\frac{π}{2}$),由同角三角函数基本关系式可求sinα,cos(α-β)的值,利用角的关系式β=(β-α)+α及两角和的正弦函数公式即可计算求值.
解答 解:∵α,β∈(0,$\frac{π}{2}$),且cosα=$\frac{5}{13}$,sin(α-β)=$\frac{4}{5}$,
∴α-β∈(-$\frac{π}{2}$,$\frac{π}{2}$),sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{12}{13}$,cos(α-β)=$\sqrt{1-si{n}^{2}(α-β)}$=$\frac{3}{5}$,
∴sinβ=sin[(β-α)+α]=sin(β-α)cosα+cos(β-α)sinα=-sin(α-β)cosα+cos(α-β)sinα=(-$\frac{4}{5}$)×$\frac{5}{13}$+$\frac{3}{5}×\frac{12}{13}$=$\frac{16}{65}$.
故答案为:$\frac{16}{65}$.
点评 本题主要考查了同角三角函数基本关系式,两角和的正弦函数公式,诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | 4 | C. | 6 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{2-\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | -$\frac{\sqrt{6}}{3}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | -$\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com