精英家教网 > 高中数学 > 题目详情

(13分)如图,在边长为2的菱形中,的中点.(Ⅰ)求证:平面 ;
(Ⅱ)若,求与平面所成角的正弦值.

(Ⅰ)证明:见解析;(Ⅱ) 与平面所成的角的正弦值为

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四面体ABCD中,O、E分别是BD、BC的中点

(I)求证:平面BCD;
(II)求异面直线AB与CD所成角的余弦值;
(III)求点E到平面ACD的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本小题满分12分)

已知三棱锥P­ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,
N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(I)证明:CM⊥SN;(II)求SN与平面CMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直.

(1)求证:
(2)求直线与平面所成角的正弦值;
(3)线段上是否存在点,使// 平面?若存在,求出;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形中(图1),的中点,将(图1)沿直线折起,使二面角(如图2)
(1)求证:平面
(2)求二面角A—DC—B的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正三棱柱ABC—A1B1C1中,底面边长及侧棱长均为2,D是棱AB的中点,
(1)求证;
(2)求异面直线AC1与B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.

(1)求证:BD⊥平面AED;(4分)
(2)求二面角F-BD-C的余弦值.(8分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(本小题满分13分)如图,平面⊥平面,,,

直线与直线所成的角为,又。     
(1)求证:
(2)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
如图:是⊙的直径,垂直于⊙所在的平面,是圆周上不同于的任意一点,
(1)求证:平面.
(2)图中有几个直角三角形.

查看答案和解析>>

同步练习册答案