如图,四面体ABCD中,O、E分别是BD、BC的中点
(I)求证:平面BCD;
(II)求异面直线AB与CD所成角的余弦值;
(III)求点E到平面ACD的距离。
(I)证明:见解析;(II)(III)点E到平面ACD的距离为
解析试题分析:(I)欲证AO⊥平面BCD,根据直线与平面垂直的判定定理可知只需证AO与平面BCD内两相交直线垂直,而CO⊥BD,AO⊥OC,BD∩OC=O,满足定理;
(II)以O为原点,OB为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,异面直线AB与CD的向量坐标,求出两向量的夹角即可;
(III)求出平面ACD的法向量,点E到平面ACD的距离转化成向量EC在平面ACD法向量上的投影即可.
解:(I)证明:连结OC
在中,由已知可得
而 即
平面
(II)解:取AC的中点M,连结OM、ME、OE,由E为BC的中点知
直线OE与EM所成的锐角就是异面直线AB与CD所成的角
在中,
是直角斜边AC上的中线,
(III)解:设点E到平面ACD的距离为
在中,
而
点E到平面ACD的距离为
考点:本题主要考查了直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力.
点评:解决该试题的关键是能对于空间中点线面的位置关系的研究,既可以运用几何方法来证明,也可以建立直角坐标系,借助于向量来得到。
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,已知四棱锥P—ABCD中,底面ABCD为菱形,PA平面ABCD,,BC=1,E为CD的中点,PC与平面ABCD成角。
(1)求证:平面EPB平面PBA;(2)求二面角P-BD-A 的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
如图,在四棱锥中,底面为平行四边形,平面,在棱上.
(I)当时,求证平面
(II)当二面角的大小为时,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分10分)已知:四边形ABCD是空间四边形,E, H分别是边AB,AD的中点,F, G分别是边CB,CD上的点,且.
求证:(1)四边形EFGH是梯形;
(2)FE和GH的交点在直线AC上 .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分13分)
如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.
(1)求证:BD⊥平面PAC;
(2)求二面角P—CD—B余弦值的大小
(3)求点C到平面PBD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,直三棱柱ABC?A1B1C1中, AC= BC=AA1,D是棱AA1的中点,DC1⊥BD.
(Ⅰ)证明:DC1⊥BC;
(Ⅱ)求二面角A1?BD?C1的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com