精英家教网 > 高中数学 > 题目详情

(本题满分12分)
如图,在四棱锥中,底面为平行四边形,平面在棱上.

(I)当时,求证平面
(II)当二面角的大小为时,求直线与平面所成角的正弦值.

(I)见解析(II)

解析试题分析:(Ⅰ)在平行四边形中,

易知,                                                       ……2分
平面,所以平面,∴
在直角三角形中,易得
在直角三角形中,,又,∴
可得
.
,                                                       ……5分
又∵,∴平面.                              ……6分
(Ⅱ)由(Ⅰ)可知,,
可知为二面角的平面角,
,此时的中点.                                     ……8分
,连结,则平面平面,
,则平面,连结,
可得为直线与平面所成的角.
因为,,
所以.                                        ……10分
中,
直线与平面所成角的正弦值为.                         ……12分
解法二:依题意易知平面ACD.以A为坐标原点,AC、AD、SA分别为轴建立空间直角坐标系,则易得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
如图所示是一个半圆柱与三棱柱的组合体,其中,圆柱的轴截面是边长为4的正方形,为等腰直角三角形,.

试在给出的坐标纸上画出此组合体的三视图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分别是AB、CD上的点,且EF∥BC。设AE =,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).

(1)当=2时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;
(3)当取得最大值时,求二面角D-BF-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体AC1中,AB=2,BC=AA1=1.E、F、G分别为棱DD1、D1C1、BC的中点.

(1)求证:平面平面
(2)在底面A1D1上有一个靠近D1的四等分点H,求证: EH∥平面FGB1
(3)求四面体EFGB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,四棱锥P—ABCD的底面是矩形,PA⊥面ABCD,PA=2,AB=8,BC=6,点E是PC的中点,F在AD上且AF:FD=1:2.建立适当坐标系.

(1)求EF的长;
(2)证明:EF⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,在四面体中,,的中点.

(1)求证:平面
(2)设的重心,是线段上一点,且.求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四面体ABCD中,O、E分别是BD、BC的中点

(I)求证:平面BCD;
(II)求异面直线AB与CD所成角的余弦值;
(III)求点E到平面ACD的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
如图,在直三棱柱(侧棱垂直于底面的棱柱)中, , , , ,点的中点.

(Ⅰ) 求证:∥平面
(Ⅱ)求AC1与平面CC1B1B所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直.

(1)求证:
(2)求直线与平面所成角的正弦值;
(3)线段上是否存在点,使// 平面?若存在,求出;若不存在,说明理由.

查看答案和解析>>

同步练习册答案