精英家教网 > 高中数学 > 题目详情

(本题满分12分)如图,四棱锥P—ABCD的底面是矩形,PA⊥面ABCD,PA=2,AB=8,BC=6,点E是PC的中点,F在AD上且AF:FD=1:2.建立适当坐标系.

(1)求EF的长;
(2)证明:EF⊥PC.

(1)6 (2)见解析

解析试题分析:(1)以A为原点,分别为x,y,z轴建立直角坐标系,…………2分
由条件知:AF=2,…………3分
∴F(0,2,0),P(0,0,2),C(8,6,0).…4分
从而E(4,3,),∴EF==6.…………6分
(2)证明:=(-4,-1,-),=(8,6,-2),…………8分
=-4×8+(-1)×6+(-)×(-2)=0,…………10分
∴EF⊥PC.…………12分
考点:利用空间向量求距离证明垂直关系
点评:向量法求解立体题目比几何法思路简单明了

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,PA垂直于矩形ABCD所在的平面,,E、F分别是AB、PD的中点.

(Ⅰ)求证:平面PCE 平面PCD;
(Ⅱ)求三棱锥P-EFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)如右图,简单组合体ABCDPE,其底面ABCD为边长为的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=.

(1)若N为线段PB的中点,求证:EN//平面ABCD;
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,平行四边形中,沿折起到的位置,使平面平面

(I)求证:;     
(Ⅱ)求三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 如图,平面⊥平面,其中为矩形,为梯形,=2=2,中点.
(Ⅰ) 证明
(Ⅱ) 若二面角的平面角的余弦值为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,在四棱锥中,底面为平行四边形,平面在棱上.

(I)当时,求证平面
(II)当二面角的大小为时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)已知:四边形ABCD是空间四边形,E, H分别是边AB,AD的中点,F, G分别是边CB,CD上的点,且
求证:(1)四边形EFGH是梯形;
(2)FE和GH的交点在直线AC上 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.

(1)求证:BD⊥平面PAC;
(2)求二面角P—CD—B余弦值的大小
(3)求点C到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(ii)当满足条件           ___________时,有.(填所选条件的序号)

查看答案和解析>>

同步练习册答案