精英家教网 > 高中数学 > 题目详情

(本题满分12分) 如图,平面⊥平面,其中为矩形,为梯形,=2=2,中点.
(Ⅰ) 证明
(Ⅱ) 若二面角的平面角的余弦值为,求的长.

(Ⅰ) 证明见解析(Ⅱ)

解析试题分析:(Ⅰ)由已知为正三角形,中点,所以 ,
因为平面⊥平面,平面⊥平面,
所以平面,所以.                                            ……4分
(Ⅱ) 方法一:设.取的中点,由题意得
因为平面⊥平面,所以⊥平面
所以,所以⊥平面
,垂足为
连结,则
所以为二面角的平面角.                                         ……8分
在直角△中,,得
在直角△中,由=sin∠AFB=,得,所以
在直角△中,,得
因为,得x=,所以.                      ……12分
方法二:设.以为原点,所在的直线分别为轴,轴建立空间直角坐标系
 (0,0,0),(-2,0,0),(,0,0),(-1,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在五面体ABCDEF中,

(Ⅰ)求异面直线BF与DE所成角的余弦值;
(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为?若存在,试确定点M的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,在上,过点//的位置(),
使得.

(I)求证:  (II)试问:当点上移动时,二面角的平面角的余弦值是否为定值?若是,求出定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,四边形均为菱形, ,且

(Ⅰ)求证:平面
(Ⅱ)求证:AE∥平面FCB;
(Ⅲ)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.

(I)求证:A1C//平面AB1D;
(II)求二面角B—AB1—D的大小;
(III)求点C到平面AB1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,四棱锥P—ABCD的底面是矩形,PA⊥面ABCD,PA=2,AB=8,BC=6,点E是PC的中点,F在AD上且AF:FD=1:2.建立适当坐标系.

(1)求EF的长;
(2)证明:EF⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题11分)如图,在四棱锥中,平面,.

(1)证明:平面 
(2)求和平面所成角的正弦值
(3)求二面角的正切值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知在侧棱垂直于底面的三棱柱中,
的中点。

(1)求证:
(2)求与平面所成的角的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
正四棱柱ABCD—A1B1C1D1中,已知AB=2,E,F分别是D1B,AD的中点,
(1)建立适当的坐标系,求出E点的坐标;
(2)证明:EF是异面直线D1B与AD的公垂线;
(3)求二面角D1—BF—C的余弦值.

查看答案和解析>>

同步练习册答案