精英家教网 > 高中数学 > 题目详情

(本小题满分14分)如图,在四面体中,,的中点.

(1)求证:平面
(2)设的重心,是线段上一点,且.求证:平面.

(1)见解析(2) 见解析

解析试题分析:(1)由 ………………………… 3分
同理,,又∵,平面,∴平面………7分
(2)连接AG并延长交CD于点O,连接EO.因为G为的重心,所以,
,所以 ……………………………………………………11分
,,所以平面 ……………………………14分
考点:线面平行垂直的判定定理
点评:充分利用中点,比例线段构成的平行垂直关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在直三棱柱中,分别是棱上的点(点 不同于点),且的中点.

求证:(1)平面平面
(2)直线平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)如图,在四棱锥中,底面是正方形,侧棱底面的中点,作于点

(1)证明:平面.
(2)证明:平面.
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体 中点.

(1)求证:
(2)在棱上是否存在一点,使得平面若存在,求的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,在四棱锥中,底面为平行四边形,平面在棱上.

(I)当时,求证平面
(II)当二面角的大小为时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E的棱AB上移动。
(I)证明:D1EA1D;
(II)AE等于何值时,二面角D1-EC-D的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面 ,   ,的中点.
(Ⅰ)证明:
(Ⅱ)证明:平面
(Ⅲ)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知棱长为a的正方体ABCD—A1B1C1D1,E为BC中点.
(1)求B到平面B1ED距离
(2)求直线DC和平面B1ED所成角的正弦值. (12分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,侧面与侧面均为等边三角形,中点.
(Ⅰ)证明:平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案