精英家教网 > 高中数学 > 题目详情

(本小题满分10分)
如图所示是一个半圆柱与三棱柱的组合体,其中,圆柱的轴截面是边长为4的正方形,为等腰直角三角形,.

试在给出的坐标纸上画出此组合体的三视图.


解析试题分析:正视图--------------------3分
左视图--------------------3分
俯视图--------------------4分

考点:三视图。
点评:几何体三视图的排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右边,高度与正视图一样,宽度与俯视图一样,即“长对正,高平齐,宽相等”,注意实、虚线的区别。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,棱柱的侧面是菱形,

(1)证明:平面平面
(2)设上的点,且平面,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图:四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=,E、F分别为线段PD和BC的中点.

(Ⅰ) 求证:CE∥平面PAF;
(Ⅱ) 在线段BC上是否存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°?若存在,试确定G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 是边长为的正方形,平面与平面所成角为.

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)线段上是否存在点,使得平面?若存在,试确定点的位置;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,PA垂直于矩形ABCD所在的平面,,E、F分别是AB、PD的中点.

(Ⅰ)求证:平面PCE 平面PCD;
(Ⅱ)求三棱锥P-EFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直三棱柱中,分别是棱上的点(点 不同于点),且的中点.

求证:(1)平面平面
(2)直线平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,已知四棱锥P—ABCD中,底面ABCD为菱形,PA平面ABCD,,BC=1,E为CD的中点,PC与平面ABCD成角。

(1)求证:平面EPB平面PBA;(2)求二面角P-BD-A 的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在□ABCD中,∠DAB=60°,AB=2,AD="4." 将△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.

(1)求证:AB⊥DE;
(2)求三棱锥E—ABD的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,在四棱锥中,底面为平行四边形,平面在棱上.

(I)当时,求证平面
(II)当二面角的大小为时,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案