精英家教网 > 高中数学 > 题目详情
18.在${(\sqrt{x}-{2^{-1}}x)^n}$的二项展开式中,若第四项的系数为-7,则n=(  )
A.9B.8C.7D.6

分析 先写出其通项,再令r=3,根据第四项的系数为-7,即可求出n的值.

解答 解:${(\sqrt{x}-{2^{-1}}x)^n}$的二项展开式的通项为Tr+1=Cnr(-2-1r${x}^{\frac{n+r}{2}}$,
∵第四项的系数为-7,
∴r=3,
∴Cn3(-2-13=-7,
解得n=8,
故选:B.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x2+(a+2)x+b,若f(-1)=-2,且对于任意实数x都有f(x)≥2x.
(1)求f(x)的解析式;
(2)讨论函数f(x)在区间[-3,1]上的单调性;
(3)求函数f(x)在区间[-3,1]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆x2+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<1),其左、右焦点分别为F1、F2,|F1F2|=2c.若此椭圆上存在点P,使P到直线x=$\frac{1}{c}$的距离是|PF1|与|PF2|的等差中项,则b的最大值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设数列{an}的前n项和为Sn,若${S_n}=1-\frac{2}{3}{a_n}$(n∈N*),则$\lim_{n→∞}{S_n}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图:椭圆$\frac{x^2}{2}+{y^2}$=1与双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)有相同的焦点F1、F2,它们在y轴右侧有两个交点A、B,满足$\overrightarrow{{F_2}A}+\overrightarrow{{F_2}B}$=0.将直线AB左侧的椭圆部分(含A,B两点)记为曲线W1,直线AB右侧的双曲线部分(不含A,B两点)记为曲线W2.以F1为端点作一条射线,分别交W1于点P(xP,yP),交W2于点M(xM,yM)(点M在第一象限),设此时$\overrightarrow{{F_1}M}=m•\overrightarrow{{F_1}P}$.
(1)求W2的方程;
(2)证明:xP=$\frac{1}{m}$,并探索直线MF2与PF2斜率之间的关系;
(3)设直线MF2交W1于点N,求△MF1N的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}中,a1=11,a5=-1,则{an}的前n项和Sn的最大值是(  )
A.15B.20C.26D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,D为BC边上一点,AD=BD,AC=4,BC=5.
(1)若∠C=60°,求△ABC外接圆半径R的值;
(2)设∠CAB-∠B=θ,若$tanθ=\frac{{\sqrt{15}}}{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z的实部和虚部相等,且z(2+i)=3-bi(b∈R),则|z|=(  )
A.3$\sqrt{2}$B.2$\sqrt{2}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知(ax+1)5的展开式中各项系数和为243,则二项式${({\frac{3x}{a}-\frac{1}{{\root{3}{x}}}})^5}$的展开式中含x项的系数为-$\frac{45}{2}$.(用数字作答)

查看答案和解析>>

同步练习册答案