精英家教网 > 高中数学 > 题目详情
5.已知等差数列{an}的前n项和为Sn,且S9=90,S15=240.
(1)求{an}的通项公式an和前n项和Sn
(2)设{bn-(-1)nan}是等比数列,且b2=7,b5=71,求数列{bn}的前n项和Tn

分析 (1)利用等差数列的通项公式及其前n项和公式即可得出;
(2)设等比数列{bn-(-1)nan}的公比为q,可得${b}_{2}-(-1)^{2}{a}_{2}$=3,${b}_{5}-(-1)^{5}{a}_{5}$=81,利用等比数列的通项公式可得:81=3q3,解得q.可得bn=(-1)n•2n+3n-1.对n分类讨论,利用等差数列与等比数列的前n项和公式即可得出.

解答 解:(1)设等差数列{an}的公差为d,∵S9=90,S15=240.
∴$9{a}_{1}+\frac{9×8}{2}$d=90,15a1+$\frac{15×14}{2}$d=240,
联立解得a1=d=2.
∴an=2+2(n-1)=2n,
Sn=$\frac{n(2+2n)}{2}$=n2+n.
(2)设等比数列{bn-(-1)nan}的公比为q,
${b}_{2}-(-1)^{2}{a}_{2}$=7-4=3,
${b}_{5}-(-1)^{5}{a}_{5}$=71+10=81,
∴81=3q3,解得q=3.
∴bn-(-1)nan=bn-(-1)n•2n=3×3n-2=3n-1
∴bn=(-1)n•2n+3n-1
数列{3n-1}的前n项和=$\frac{{3}^{n}-1}{3-1}$=$\frac{1}{2}$(3n-1).
∴数列{bn}的前n项和Tn=T2k=2[(2-1)+(4-3)+…+(n-(n-1))]+3n-1=2k+3n-1=n+$\frac{1}{2}$(3n-1).
数列{bn}的前n项和Tn=T2k-1=-2+2[(2-3)+(4-5)+…+(n-1-n)]+$\frac{1}{2}$(3n-1)
=-2-2(k-1)+$\frac{1}{2}$(3n-1)
=$\frac{{3}^{n}-(2n+3)}{2}$.
∴Tn=$\left\{\begin{array}{l}{n+\frac{1}{2}({3}^{n}-1),n=2k}\\{\frac{{3}^{n}-(2n+3)}{2},n=2k-1}\end{array}\right.$,k∈N*

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.“互联网+”时代,全民阅读的内涵已经多元化,倡导读书成为一种生活方式,某校为了解高中学生的阅读情况,拟采取分层抽样的方法从该校三个年级的学生中抽取一个容量为60的样本进行调查,已知该校有高一学生600人,高二学生400人,高三学生200人,则应从高一学生抽取的人数为(  )
A.10B.20C.30D.40

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=sin(ωx+$\frac{π}{3}$)的周期为π,则ω=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且a1=3,Sn+1-2Sn=1-n.
(I)求数列{an}的通项公式;
(Ⅱ)令bn=$\frac{{2}^{n-1}}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足an+1=2an+4•3n-1,a1=1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}满足[2-(-1)n]an+[2+(-1)n]an+1=1+(-1)n×3n,则a25-a1=300.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x∈R,cosx>1,则¬p是(  )
A.?x∈R,cosx<1B.?x∈R,cosx<1C.?x∈R,cosx≤1D.?x∈R,cosx≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,a1=2,a2=4,且an+1=3an-2an-1(n≥2),设bn=log2${\;}^{({a}_{n+1}-{a}_{n)}}$
(1)求证:数列{bn}为等差数列;
(2)求数列{$\frac{1}{{b}_{{\;}_{n}}{b}_{n+1}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(拉普拉斯(Laplace)分布)设随机变量X的概率密度为
f(x)=Ae-|x|,-∞<x<+∞
求:
(1)系数A;
(2)随机变量X落在区间(0,1)内的概率;
(3)随机变量X的分布函数.

查看答案和解析>>

同步练习册答案