精英家教网 > 高中数学 > 题目详情
10.已知数列{an}满足[2-(-1)n]an+[2+(-1)n]an+1=1+(-1)n×3n,则a25-a1=300.

分析 由[2-(-1)n]an+[2+(-1)n]an+1=1+(-1)n×3n,当n=2k(k∈N*),可得:a2k+3a2k+1=1+6k,n=2k-1(k∈N*),可得:3a2k-1+a2k=1-6k+3,于是a2k+1-a2k-1=4k-1,利用“累加求和”方法与等差数列的前n项和公式即可得出.

解答 解:∵[2-(-1)n]an+[2+(-1)n]an+1=1+(-1)n×3n,
∴n=2k(k∈N*),可得:a2k+3a2k+1=1+6k,
n=2k-1(k∈N*),可得:3a2k-1+a2k=1-6k+3,
∴a2k+1-a2k-1=4k-1,
∴a25=(a25-a23)+(a23-a21)+…+(a3-a1)+a1
=(4×12-1)+(4×11-1)+…+(4×1-1)+a1=$4×\frac{12×(12+1)}{2}$-12+a1=300+a1
则a25-a1=300,
故答案为:300.

点评 本题考查了数列的递推关系、“累加求和”方法、等差数列的前n项和公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知定义在R上的函数满足条件f(x+$\frac{3}{2$)=-f(x),且函数y=f(x-$\frac{3}{4}$)为奇函数,则下面给出的命题,错误的是(  )
A.函数y=f(x)是周期函数,且周期T=3B.函数y=f(x)在R上有可能是单调函数
C.函数y=f(x)的图象关于点$(-\frac{3}{4},0)$对称D.函数y=f(x)是R上的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.△ABC是正三角形,平面ABC外有一点O,且OA=OB=OC,截面PQRS平行于OA和BC,则四边形PQRS是距形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前项和为Sn,且满足2Sn=1-2an
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=n•an,求证:数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}的前n项和为Sn,且S9=90,S15=240.
(1)求{an}的通项公式an和前n项和Sn
(2)设{bn-(-1)nan}是等比数列,且b2=7,b5=71,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数a>0,b>0,0<m<4,且a+b=2,则$\frac{1}{a}$+$\frac{4}{(4-m)b}$+$\frac{4}{mb}$的最小值为(  )
A.4B.$\frac{9}{2}$C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知直三棱柱ABC-A′B′C′的底面为等边三角形,D是AA′上的点,E是B′C′的中点,且A′E∥平面DBC′,试判断点D在AA′上的位置,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知菱形ABCD,将△ABD沿菱形的对角线BD所在的直线进行翻折,在翻折过程中(  )
A.在任意位置,直线AC与直线BD垂直
B.在任意位置,直线AB与直线CD垂直
C.在任意位置,直线AD与直线BC垂直
D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若实数x,y满足约束条件$\left\{\begin{array}{l}{3x-y≥0}\\{x+y-4≤0}\\{2y≥{x}^{2}}\end{array}\right.$,则4y-x的取值范围是(  )
A.[-$\frac{1}{2}$,16]B.[$\frac{1}{2}$,16]C.[$\frac{1}{2}$,4]D.[1,16]

查看答案和解析>>

同步练习册答案