精英家教网 > 高中数学 > 题目详情
2.如图,已知直三棱柱ABC-A′B′C′的底面为等边三角形,D是AA′上的点,E是B′C′的中点,且A′E∥平面DBC′,试判断点D在AA′上的位置,并给出证明.

分析 D点是AA′的中点.如图,取BC的中点O,连接EO,DO,欲证明A′E∥平面DBC′,只需推知A′E∥DO.所以证得四边形A′DOE为平行四边形即可.

解答 解:D点是AA′的中点.理由如下:
如图,取BC的中点O,连接EO,DO,
∵直三棱柱ABC-A′B′C′的底面为等边三角形,E是B′C′的中点,
∴EO∥BB′∥AA′.
又∵A′E∥平面DBC′,
∴A′E∥DO.
∴四边形A′DOE是平行四边形,
∴A′D=EO,
∴D点是AA′的中点.

点评 本题考查了直线与平面平行的判定.对于平面外的一条直线,只需在平面内找到一条直线和这条直线平行,就可判定这条直线必和这个平面平行.即由线线平行得到线面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知三个函数:①f(x)=x3,②f(x)=tanx,③f(x)=xsinx,其图象能将圆O:x2+y2=1的面积等分的函数的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且a1=3,Sn+1-2Sn=1-n.
(I)求数列{an}的通项公式;
(Ⅱ)令bn=$\frac{{2}^{n-1}}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}满足[2-(-1)n]an+[2+(-1)n]an+1=1+(-1)n×3n,则a25-a1=300.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x∈R,cosx>1,则¬p是(  )
A.?x∈R,cosx<1B.?x∈R,cosx<1C.?x∈R,cosx≤1D.?x∈R,cosx≤1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设集合A={(m1,m2,m3)|mi∈{-2,0,2},i∈{1,2,3}},则集合A满足条件:“2≤|m1|+|m2|+|m3|≤5”的元素个数为18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,a1=2,a2=4,且an+1=3an-2an-1(n≥2),设bn=log2${\;}^{({a}_{n+1}-{a}_{n)}}$
(1)求证:数列{bn}为等差数列;
(2)求数列{$\frac{1}{{b}_{{\;}_{n}}{b}_{n+1}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,A=$\frac{π}{3}$,|$\overrightarrow{AC}$|=m,m∈[1,2],若对于任意实数t恒有|$\overrightarrow{AB}$-t$\overrightarrow{AC}$|≥|$\overrightarrow{BC}$|,则△ABC面积的最大值是(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等差数列的第1项是7,第9项是1,则它的第5项是(  )
A.2B.3C.4D.6

查看答案和解析>>

同步练习册答案