精英家教网 > 高中数学 > 题目详情
9.已知椭圆的中心在原点,焦点为${F_1}(-2\sqrt{3},0),{F_2}(2\sqrt{3},0)$,且离心率$e=\frac{{\sqrt{3}}}{2}$.
(1)求椭圆的方程;
(2)求以点P(2,-1)为中点的弦所在的直线方程.

分析 (1)由椭圆的焦点和离心率列出方程组,求出a,b,由此能求出椭圆方程.
(2)设以点P(2,-1)为中点的弦与椭圆交于点A(x1,y1),B(x2,y2),则x1+x2=4,y1+y2=-2,由此利用点差法能求出以点P(2,-1)为中点的弦所在的直线方程.

解答 解:(1)∵椭圆的中心在原点,焦点为${F_1}(-2\sqrt{3},0),{F_2}(2\sqrt{3},0)$,且离心率$e=\frac{{\sqrt{3}}}{2}$,
∴$\left\{\begin{array}{l}{c=2\sqrt{3}}\\{e=\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=4,c=2$\sqrt{3}$,b=2,
∴椭圆方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$.
(2)设以点P(2,-1)为中点的弦与椭圆交于点A(x1,y1),B(x2,y2),
则x1+x2=4,y1+y2=-2,
∴$\left\{\begin{array}{l}{{{x}_{1}}^{2}+4{{y}_{1}}^{2}=16}\\{{{x}_{2}}^{2}+4{{y}_{2}}^{2}=16}\end{array}\right.$,两式相减,并整理,得4(x1-x2)-8(y1-y2)=0,
∴k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{1}{2}$,
∴以点P(2,-1)为中点的弦所在的直线方程为:
y+1=$\frac{1}{2}$(x-2),即x-2y-4=0.

点评 本题考查椭圆方程的求法,考查中点弦所成直线方程的求法,是中档题,解题时要认真审题,注意椭圆性质及点差法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.直线$ax+\frac{1}{a}y+2=0$与圆x2+y2=r2相切,则圆的半径最大时,a的值是±1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线y=kx+1,当k变化时,此直线被椭圆$\frac{{x}^{2}}{4}$+y2=1截得的最大弦长是(  )
A.4B.$\frac{4\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{lnx}{x}$,g(x)=x2-(a+b)x+ab,其中a<b,a,b∈R+
(1)?x∈R+,f(x)≤kx恒成立,求实数k的取值范围;
(2)若g(e)>0,比较ab与ba的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$e=\frac{{\sqrt{2}}}{2}$,焦距为2.
(1)求椭圆C的方程;
(2)抛物线y2=2px(p>0)的焦点和椭圆的右焦点重合,过右焦点作斜率为1的直线交椭圆于A,B,交抛物线于C,D,求△OAB和△OCD面积之比(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆A:(x+2)2+y2=1,圆B:(x-2)2+y2=49,动圆P与圆A,圆B均相切.
(1)求动圆圆心P的轨迹方程;
(2)已知点N(2,$\frac{5}{3}$),作射线AN,与“P点 轨迹”交于另一点M,求△MNB的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,椭圆的四个顶点所围成菱形的面积为$8\sqrt{2}$.
(Ⅰ)求圆的方程;
(Ⅱ)四边形ABCD的顶点在椭圆C上,且对角线AC,BD均过坐标原点O,若${k_{AC}}•{k_{BD}}=-\frac{1}{2}$.
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范围;
(2)证明:四边形ABCD的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在△ABC中,∠B=$\frac{π}{2}$,AB=BC=2,P为AB上一动点,PD∥BC交AC于点D,现将△PDA沿PD翻折至△PDA′,使平面PDA′⊥平面PBCD.
(Ⅰ)若PA=$\frac{1}{2}$,求棱锥A′-PBCD的体积;
(Ⅱ)若点定P为AB的中点,求证:平面A′DC⊥平面A′BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求经过点(-5,2),焦点为$({\sqrt{6},0})$的双曲线的标准方程,并求出该双曲线的实轴长,虚轴长,离心率,渐近线方程.

查看答案和解析>>

同步练习册答案