分析 (I)运用椭圆的离心率公式和抛物线的焦点坐标,以及椭圆的a,b,c的关系,解得a,b,进而得到椭圆的方程;
(Ⅱ)(i)设P(x0,y0),运用导数求得切线的斜率和方程,代入椭圆方程,运用韦达定理,可得中点D的坐标,求得OD的方程,再令x=x0,可得y=-$\frac{1}{4}$.进而得到定直线;
(ii)由直线l的方程为y=x0x-y0,令x=0,可得G(0,-y0),运用三角形的面积公式,可得S1=$\frac{1}{2}$|FG|•|x0|=$\frac{1}{2}$x0•($\frac{1}{2}$+y0),S2=$\frac{1}{2}$|PM|•|x0-$\frac{4{x}_{0}{y}_{0}}{1+4{{x}_{0}}^{2}}$|,化简整理,再1+2x02=t(t≥1),整理可得t的二次方程,进而得到最大值及此时P的坐标.
解答 解:(I)由题意可得e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,抛物线E:x2=2y的焦点F为(0,$\frac{1}{2}$),
即有b=$\frac{1}{2}$,a2-c2=$\frac{1}{4}$,
解得a=1,c=$\frac{\sqrt{3}}{2}$,
可得椭圆的方程为x2+4y2=1;
(Ⅱ)(i)证明:设P(x0,y0),可得x02=2y0,
由y=$\frac{1}{2}$x2的导数为y′=x,即有切线的斜率为x0,
则切线的方程为y-y0=x0(x-x0),
可化为y=x0x-y0,代入椭圆方程,
可得(1+4x02)x2-8x0y0x+4y02-1=0,
△=64x02y02-4(1+4x02)(4y02-1)>0,可得1+4x02>4y02.
设A(x1,y1),B(x2,y2),
可得x1+x2=$\frac{8{x}_{0}{y}_{0}}{1+4{{x}_{0}}^{2}}$,即有中点D($\frac{4{x}_{0}{y}_{0}}{1+4{{x}_{0}}^{2}}$,-$\frac{{y}_{0}}{1+4{{x}_{0}}^{2}}$),
直线OD的方程为y=-$\frac{1}{4{x}_{0}}$x,可令x=x0,可得y=-$\frac{1}{4}$.
即有点M在定直线y=-$\frac{1}{4}$上;
(ii)直线l的方程为y=x0x-y0,令x=0,可得G(0,-y0),
则S1=$\frac{1}{2}$|FG|•|x0|=$\frac{1}{2}$x0•($\frac{1}{2}$+y0)=$\frac{1}{4}$x0(1+x02);
S2=$\frac{1}{2}$|PM|•|x0-$\frac{4{x}_{0}{y}_{0}}{1+4{{x}_{0}}^{2}}$|=$\frac{1}{2}$(y0+$\frac{1}{4}$)•$\frac{{x}_{0}+4{{x}_{0}}^{3}-4{x}_{0}{y}_{0}}{1+4{{x}_{0}}^{2}}$=$\frac{1}{8}$x0•$\frac{(1+2{{x}_{0}}^{2})^{2}}{1+4{{x}_{0}}^{2}}$,
则$\frac{{S}_{1}}{{S}_{2}}$=$\frac{2(1+{{x}_{0}}^{2})(1+4{{x}_{0}}^{2})}{(1+2{{x}_{0}}^{2})^{2}}$,
令1+2x02=t(t≥1),则$\frac{{S}_{1}}{{S}_{2}}$=$\frac{2(1+\frac{t-1}{2})(1+2t-2)}{{t}^{2}}$=$\frac{(t+1)(2t-1)}{{t}^{2}}$
=$\frac{2{t}^{2}+t-1}{{t}^{2}}$=2+$\frac{1}{t}$-$\frac{1}{{t}^{2}}$=-($\frac{1}{t}$-$\frac{1}{2}$)2+$\frac{9}{4}$,
则当t=2,即x0=$\frac{\sqrt{2}}{2}$时,$\frac{{S}_{1}}{{S}_{2}}$取得最大值$\frac{9}{4}$,
此时点P的坐标为($\frac{\sqrt{2}}{2}$,$\frac{1}{4}$).
点评 本题考查椭圆的方程的求法,注意运用椭圆的离心率和抛物线的焦点坐标,考查直线和抛物线斜的条件,以及直线方程的运用,考查三角形的面积的计算,以及化简整理的运算能力,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 18个 | B. | 16个 | C. | 14个 | D. | 12个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com