精英家教网 > 高中数学 > 题目详情
20.平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率是$\frac{\sqrt{3}}{2}$,抛物线E:x2=2y的焦点F是C的一个顶点.
(I)求椭圆C的方程;
(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
(i)求证:点M在定直线上;
(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求$\frac{{S}_{1}}{{S}_{2}}$的最大值及取得最大值时点P的坐标.

分析 (I)运用椭圆的离心率公式和抛物线的焦点坐标,以及椭圆的a,b,c的关系,解得a,b,进而得到椭圆的方程;
(Ⅱ)(i)设P(x0,y0),运用导数求得切线的斜率和方程,代入椭圆方程,运用韦达定理,可得中点D的坐标,求得OD的方程,再令x=x0,可得y=-$\frac{1}{4}$.进而得到定直线;
(ii)由直线l的方程为y=x0x-y0,令x=0,可得G(0,-y0),运用三角形的面积公式,可得S1=$\frac{1}{2}$|FG|•|x0|=$\frac{1}{2}$x0•($\frac{1}{2}$+y0),S2=$\frac{1}{2}$|PM|•|x0-$\frac{4{x}_{0}{y}_{0}}{1+4{{x}_{0}}^{2}}$|,化简整理,再1+2x02=t(t≥1),整理可得t的二次方程,进而得到最大值及此时P的坐标.

解答 解:(I)由题意可得e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,抛物线E:x2=2y的焦点F为(0,$\frac{1}{2}$),
即有b=$\frac{1}{2}$,a2-c2=$\frac{1}{4}$,
解得a=1,c=$\frac{\sqrt{3}}{2}$,
可得椭圆的方程为x2+4y2=1;
(Ⅱ)(i)证明:设P(x0,y0),可得x02=2y0
由y=$\frac{1}{2}$x2的导数为y′=x,即有切线的斜率为x0
则切线的方程为y-y0=x0(x-x0),
可化为y=x0x-y0,代入椭圆方程,
可得(1+4x02)x2-8x0y0x+4y02-1=0,
△=64x02y02-4(1+4x02)(4y02-1)>0,可得1+4x02>4y02
设A(x1,y1),B(x2,y2),
可得x1+x2=$\frac{8{x}_{0}{y}_{0}}{1+4{{x}_{0}}^{2}}$,即有中点D($\frac{4{x}_{0}{y}_{0}}{1+4{{x}_{0}}^{2}}$,-$\frac{{y}_{0}}{1+4{{x}_{0}}^{2}}$),
直线OD的方程为y=-$\frac{1}{4{x}_{0}}$x,可令x=x0,可得y=-$\frac{1}{4}$.
即有点M在定直线y=-$\frac{1}{4}$上;
(ii)直线l的方程为y=x0x-y0,令x=0,可得G(0,-y0),
则S1=$\frac{1}{2}$|FG|•|x0|=$\frac{1}{2}$x0•($\frac{1}{2}$+y0)=$\frac{1}{4}$x0(1+x02);
S2=$\frac{1}{2}$|PM|•|x0-$\frac{4{x}_{0}{y}_{0}}{1+4{{x}_{0}}^{2}}$|=$\frac{1}{2}$(y0+$\frac{1}{4}$)•$\frac{{x}_{0}+4{{x}_{0}}^{3}-4{x}_{0}{y}_{0}}{1+4{{x}_{0}}^{2}}$=$\frac{1}{8}$x0•$\frac{(1+2{{x}_{0}}^{2})^{2}}{1+4{{x}_{0}}^{2}}$,
则$\frac{{S}_{1}}{{S}_{2}}$=$\frac{2(1+{{x}_{0}}^{2})(1+4{{x}_{0}}^{2})}{(1+2{{x}_{0}}^{2})^{2}}$,
令1+2x02=t(t≥1),则$\frac{{S}_{1}}{{S}_{2}}$=$\frac{2(1+\frac{t-1}{2})(1+2t-2)}{{t}^{2}}$=$\frac{(t+1)(2t-1)}{{t}^{2}}$
=$\frac{2{t}^{2}+t-1}{{t}^{2}}$=2+$\frac{1}{t}$-$\frac{1}{{t}^{2}}$=-($\frac{1}{t}$-$\frac{1}{2}$)2+$\frac{9}{4}$,
则当t=2,即x0=$\frac{\sqrt{2}}{2}$时,$\frac{{S}_{1}}{{S}_{2}}$取得最大值$\frac{9}{4}$,
此时点P的坐标为($\frac{\sqrt{2}}{2}$,$\frac{1}{4}$).

点评 本题考查椭圆的方程的求法,注意运用椭圆的离心率和抛物线的焦点坐标,考查直线和抛物线斜的条件,以及直线方程的运用,考查三角形的面积的计算,以及化简整理的运算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知直线l:x-$\sqrt{3}$y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.则|CD|=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左、右焦点分别为F1,F2,直线l过F2且与双曲线交于A,B两点.
(1)直线l的倾斜角为$\frac{π}{2}$,△F1AB是等边三角形,求双曲线的渐近线方程;
(2)设b=$\sqrt{3}$,若l的斜率存在,且($\overrightarrow{{F}_{1}A}$+$\overrightarrow{{F}_{1}B}$)•$\overrightarrow{AB}$=0,求l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数y=f(x)的图象上每一个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整个图象沿x轴向左平移$\frac{π}{3}$个单位长度,最后将得到的函数图象沿y轴向下平移1个单位长度,最后得到函数y=$\frac{1}{2}$sinx的图象,则函数f(x)的解析式为)=$\frac{1}{2}$sin(2x-$\frac{π}{3}$)+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,∠A=$\frac{2π}{3}$,a=$\sqrt{3}$c,则$\frac{b}{c}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=ax2-a-lnx,其中a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)确定a的所有可能取值,使得f(x)>$\frac{1}{x}$-e1-x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有(  )
A.18个B.16个C.14个D.12个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知S是数集,若对任意a、b∈S都有a+b、a-b,ab、$\frac{a}{b}$(b≠0)∈S,则称S是数域.下列四个数集中,数域的个数是(  )
①整数集Z;②有理数集Q;③实数集R;④数集F={a+$\sqrt{2}$b|a,b∈Q}.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2cosωx(ω>0),且函数y=f(x)图象的两相邻对称轴间的距离为$\frac{π}{2}$.
(1)求f($\frac{π}{8}$)的值;
(2)将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.

查看答案和解析>>

同步练习册答案