精英家教网 > 高中数学 > 题目详情
求lg
1
4
-lg25+ln
e
+21+log23的值.
考点:对数的运算性质
专题:函数的性质及应用
分析:利用对数的运算法则、对数恒等式即可得出.
解答: 解:原式=-2lg2-2lg5+
1
2
+2log23
=-2(lg2+lg5)+
1
2
+2×3
=-2+
1
2
+6
=
9
2
点评:本题考查了对数的运算法则、对数恒等式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点A、B分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)长轴的左、右端点,点F是椭圆的右焦点,点P(
3
2
5
2
3
)在椭圆上,又椭圆离心率e=
2
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosα+sinα=-
1
5
,α∈(0,π),求cos2α-sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读材料:
已知a1,a2∈R,a1+a2=1,求a12+a22的取值范围.
解:设f(x)=(x-a12+(x-a22f(x)=(x-a12+(x-a22=2x2-2(a1+a2)x+a12+a22
∵f(x)=(x-a12+(x-a22≥0对x∈R恒成立
∴△=4(a1+a22-8(a12+a22)=4-8(a12+a22)≤0
∴a12+a22
1
2
,当且仅当a1=a2时等号成立
∴a12+a22的取值范围是[
1
2
,+∞)
根据你对阅读材料的理解和体会,已知a1,a2,…,an∈R,a1+a2+…+an=1,其中n≥2,且n∈N*,求a12+a22+…+an2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某运输公司今年年初用128万元购进一批出租车,并立即投入营运,计划第一年维修、保险及保养费用4万元,从第二年开始,每年所需维修、保险及保养费用比上一年增加4万元,该批出租车使用后,每年的总收入为120万元,设使用x年后该批出租车的盈利额为y万元.
(Ⅰ)写出y与x之间的函数关系式;
(Ⅱ)试确定x,使该批出租车年平均盈利额达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(α-
π
8
)=
3
5
8
<α<
8
,求2sinα(sinα+cosα)-1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A、B、C的对边分别为a、b、c,且 cos2A+4cos2
B+C
2
=
1
2

(1)求∠A;
(2)若a=5,△ABC的面积为2
3
,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,|
OA
|=|
OB
|=1,
OA
OB
的夹角为120°,
OC
OA
的夹角为30°,|
OC
|=5,且
OC
=m•
OA
+n•
OB
,求实数m、n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(x-
π
4
).
(1)在如下直角坐标系中,用“五点法”画出函数y=f(x)在区间[0,2π]上的简图;
(2)求函数y=f(x)的单调递增区间和递减区间.    

查看答案和解析>>

同步练习册答案