精英家教网 > 高中数学 > 题目详情
已知f(x)=2
3
sinxcosx+2cos2x-1(x∈R)
(1)求函数f(x)的最小正周期及在区间[0,
π
2
]上的最大值和最小值;
(2)若f(x0)=
6
5
,x0∈[
π
4
π
2
],求cos(2x0+
π
6
)的值.
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法
专题:三角函数的求值,三角函数的图像与性质
分析:(1)化简得f(x)=2sin(2x+
π
6
),求出函数的最小正周期以及最大、最小值;
(2)由(1)知,f(x0)=2sin(2x0+
π
6
)
,求出sin(2x0+
π
6
)的值,考虑x0的取值范围,求出cos(2x0+
π
6
)的值.
解答: 解:(1)由题知,f(x)=2
3
sinxcosx+2cos2x-1
=
3
sin2x+cos2x=2sin(2x+
π
6
),
∴函数的最小正周期为T=π;
x∈[0,
π
2
]
,∴2x+
π
6
∈[
π
6
6
]

f(x)max=f(
π
6
)=2 ,f(x)min=f(
π
2
)=-1

(2)由(1)知,f(x0)=2sin(2x0+
π
6
)

∴f(x0)=2sin(2x0+
π
6
)=
6
5

∴sin(2x0+
π
6
)=
3
5

∵x0∈[
π
4
π
2
],
∴2x0+
π
6
∈[
3
6
];
∴cos(2x0+
π
6
)<0,
∴cos(2x0+
π
6
)=-
4
5
点评:本题考查了三角函数的求值问题以及三角函数的图象与性质的应用问题,解题时应细心作答,以免出错,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输入的x值为
1
4
,则输出的y值为(  )
A、2
B、-2
C、
1
2
D、
42

查看答案和解析>>

科目:高中数学 来源: 题型:

设x、y满足约束条件
x+y≤1
y≥x
x≥0
,则z=2x-y的最大值为(  )
A、0
B、2
C、3
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中的假命题是(  )
A、以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的旋转体叫圆柱
B、以直角三角形的一条边所在的直线为旋转轴,其余两边旋转形成的曲面的旋转体叫圆锥
C、以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面围成的旋转体叫圆锥
D、以等腰三角形的底边上的高所在直线为旋转轴,其余各边旋转形成的曲面围成的旋转体叫圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左右顶点分别为A,B,点P是双曲线C上不同于顶点的任意一点,若直线PA、PB的斜率之积为
1
2

(Ⅰ)求双曲线C的离心率e;
(Ⅱ)若过点P作斜率为k(k≠±
b
a
)的直线l,使得l与双曲线C有且仅有一个公共点,记直线PF1,PF2的斜率分别为k1,k2,问是否存在实数λ使得
1
k1
+
1
k2
=λk.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx(a∈R).
(1)若a=2,求函数f(x)在(1,f(1))处的切线方程;
(2)若函数f(x)在(1,+∞)上为增函数,求a的取值范围;
(3)若a≠0,讨论方程f(x)=0的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(x+1)2+2ln
1
x

(1)求f(x)的单调区间;
(2)若关于x的方程f(x)=x2+x+a+1在区间[1,3]上恰好有两个相异的实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=-x(x-a)2(x∈R),其中a∈R.
(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)当a=3时,求函数f(x)的极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知SA⊥平面ABC,SA=AB,AB⊥BC,SB=BC,E是SC的中点,DE⊥SC交AC于D.
(1)求证:SC⊥面BDE;
(2)求二面角E-BD-C的大小.

查看答案和解析>>

同步练习册答案