精英家教网 > 高中数学 > 题目详情
11.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的图象如图所示,则函数的解析式为y=5sin($\frac{2}{3}$x+$\frac{π}{3}$).

分析 根据条件下求出A,ω和φ的值即可求函数的表达式

解答 解:由图象知A=5,且$\frac{1}{2}$T=$\frac{5π}{2}$-π=$\frac{3π}{2}$,
即T=3π.
即$\frac{2π}{ω}$=3π得ω=$\frac{2}{3}$,
则y=5sin($\frac{2}{3}$x+φ),
即当x=$\frac{π}{4}$时,y=5sin($\frac{2}{3}$×$\frac{π}{4}$+φ)=5,
即sin($\frac{π}{6}$+φ)=1,
即$\frac{π}{6}$+φ=2kπ+$\frac{π}{2}$,即φ=2kπ+$\frac{π}{3}$,
∵|φ|<π,
∴当k=0时,φ=$\frac{π}{3}$,
即y=5sin($\frac{2}{3}$x+$\frac{π}{3}$),
故答案为:5sin($\frac{2}{3}$x+$\frac{π}{3}$)

点评 本题主要考查三角函数解析式的求解,利用图象求出函数的解析式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若反比例函数f(x)=$\frac{k}{x}$的图象在第一象限内单调递减,则k的取值范围(  )
A.k≥0B.k≤0C.k>0D.k<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列大小关系正确的是(  )
A.${3^{\frac{1}{3}}}>{4^{\frac{1}{3}}}$B.0.30.4>0.30.3C.log76<log67D.sin3>sin2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,一抛物线型石拱桥在如图所示的直角坐标系中,桥的最大高度为16m,跨度为40m.
(1)求抛物线的关系式;
(2)求距离y轴5m的石拱桥的高度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知变量x、y满足$\left\{\begin{array}{l}x-4y+3≤0\\ x≥1\\ x+y-4≤0\end{array}\right.$,点(x,y)对应的区域的面积$\frac{8}{5}$,$\frac{{x}^{2}+{y}^{2}}{xy}$的取值范围为[2,$\frac{10}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求函数y=sin(2x-$\frac{π}{6}$)的最值,并说明取得最值时x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知四边形OADB是以向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$为边的平行四边形,点C为对角线AB,OD的交点,$\overrightarrow{BM}=\frac{1}{3}\overrightarrow{BC}$,$\overrightarrow{CN}=\frac{1}{3}\overrightarrow{CD}$
(1)试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{OM},\overrightarrow{ON},\overrightarrow{MN}$;
(2)若OA=2,OB=6,MN=1,求平行四边形OADB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知不共线的两个单位向量$\overrightarrow{OA}$、$\overrightarrow{OB}$的夹角为120°,点C在线段AB上,设向量$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R).
(1)试求x、y满足的关系式;
(2)延长OC至点D,使|$\overrightarrow{OD}$|=1,记$\overrightarrow{OD}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(λ,μ∈R),求λ+μ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=asinx-bcosx图象的对称轴方程是x=$\frac{π}{4}$,则直线ax-by+c=0的斜率为-1.

查看答案和解析>>

同步练习册答案