精英家教网 > 高中数学 > 题目详情
3.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直,则该几何体的表面积是(  )
A.$96+16\sqrt{5}$B.$80+16\sqrt{5}$C.$80+32\sqrt{5}$D.$96+32\sqrt{5}$

分析 通过三视图可知该几何体是一个正方体扣去一个正四棱锥,计算五个正方形的面积与四个等腰三角形的面积即可.

解答 解:由三视图可知该几何体是一个正方体扣去一个正四棱锥,如图.
则正四棱锥的侧面是底为4、高为$\sqrt{{2}^{2}+{4}^{2}}$=$2\sqrt{5}$的等腰三角形,
其面积S1=$\frac{1}{2}$×4×$2\sqrt{5}$=$4\sqrt{5}$,
所以该几何体的面积为5×4×4+4×S1=80+16$\sqrt{5}$,
故选:B.

点评 本题考查由三视图求表面积,考查空间想象能力,考查三角形面积公式,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.(1)从1,2,3,4四个数字中任取两个数字组成两位数,共有多少个不同的两位数?
(2)由1,2,3,4四个数字共能组成多少个没有重复数字的四位数?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.(x-$\frac{1}{2x}$)8的展开式中常数为(  )
A.$\frac{1}{2}$B.$\frac{35}{8}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求cos<$\overrightarrow{AB},\overrightarrow{AC}$>;
(2)求以AB,AC为边的平行四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知x∈(0,+∞),观察下列各式:$x+\frac{1}{x}>2,x+\frac{4}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{4}{x^2}≥3,x+\frac{27}{x^3}=\frac{x}{3}+\frac{x}{3}+\frac{27}{x^3}≥4,…$类比得$x+\frac{a}{x^n}≥n+1({n∈{N^*}})$,则a=nn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=log${\;}_{\frac{1}{e}}}$(x2+$\frac{1}{e}$)-|${\frac{x}{e}}$|,则使得f(x+1)<f(2x-1)成立x的范围是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M具有∟性,给出下列四个集合:
①M={(x,y)|y=x3-2x2+3};      ②M={(x,y)|y=log2(2-x)};
③M={(x,y)|y=2-2x};          ④M={(x,y)|y=1-sinx};
其中具有∟性的集合的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.2015年9月3日,抗战胜利70周年纪念活动在北京隆重举行,收到全国人民的瞩目.纪念活动包括举行纪念大会、阅兵式、招待会和文艺晚会等,据统计,抗战老兵由于身体原因,参加纪念大会、阅兵式、招待会这三个环节(可参加多个,也可都不参加)的情况及其概率如表所示:
参加纪念活动的环节数0123
概率$\frac{1}{6}$mn$\frac{1}{3}$
(1)若m=2n,则从这60名抗战老兵中按照参加纪念活动的环节数分层抽取6人进行座谈,求参加纪念活动环节数为1的抗战老兵中抽取的人数;
(2)某医疗部门决定从(1)中抽取的6名抗战老兵中随机抽取2名进行体检,求这2名抗战老兵中至少有1人参加纪念活动的环节数为3的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.由y=(x-2)2与y=4x-8所围图形的面积为(  )
A.6B.$\frac{54}{3}$C.$\frac{32}{3}$D.9

查看答案和解析>>

同步练习册答案