精英家教网 > 高中数学 > 题目详情
15.对于实数a,b,定义运算“□”:a□b=$\left\{\begin{array}{l}{{a}^{2}-ab,a≤b}\\{{b}^{2}-ab,a>b}\end{array}\right.$设f(x)=(x-4)□($\frac{7}{4}$x-4),若关于x的方程|f(x)-m|=1(m∈R)恰有四个互不相等的实数根,则实数m的取值范围是(-1,1)∪(2,4).

分析 根据新定义得出f(x)的解析式,作出f(x)的函数图象,则f(x)与y=m±1共有4个交点,根据图象列出不等式组解出.

解答 解:解不等式x-4≤$\frac{7}{4}x$-4得x≥0,f(x)=$\left\{\begin{array}{l}{-\frac{3}{4}{x}^{2}+3x,x≥0}\\{\frac{21}{16}{x}^{2}-3x,x<0}\end{array}\right.$,
画出函数f(x)的大致图象如图所示.

因为关于x的方程|f(x)-m|=1(m∈R),即f(x)=m±1(m∈R)恰有四个互不相等的实数根,
所以两直线y=m±1(m∈R)与曲线y=f(x)共有四个不同的交点,
∴$\left\{\begin{array}{l}{m+1>3}\\{0<m-1<3}\end{array}\right.$或$\left\{\begin{array}{l}{1<m+1<3}\\{m-1<0}\end{array}\right.$或$\left\{\begin{array}{l}{m+1=3}\\{m-1=0}\end{array}\right.$,
解得2<m<4或-1<m<1.
故答案为(-1,1)∪(2,4).

点评 本题考查了函数零点与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD中,AD∥BC,AD⊥DC,AD=2BC=2,在侧面PAD中,PA=PD,E为侧棱PC上不同于端点的任意一点且PA⊥DE.
(1)证明:平面PAD⊥平面ABCD;
(2)若PA∥平面BDE,求$\frac{CE}{PE}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$=(k,k+1),$\overrightarrow{b}$=(1,-2)且$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数k等于$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.等腰直角三角形ABC中,∠C=90°,AC=BC=2,点P是△ABC斜边上任意一点,则线段CP的长度不大于$\sqrt{3}$的概率是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{1}{2}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知三棱锥P-ABC的各顶点都在同一球的面上,且PA⊥平面ABC,若球O的体积为$\frac{20\sqrt{5}π}{3}$(球的体积公式为$\frac{4π}{3}$R3,其中R为球的半径),AB=2,AC=1,∠BAC=60°,则三棱锥P-ABC的体积为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:?x∈(1,+∞),x3+16>8x,则命题p的否定为(  )
A.?x∈(1,+∞),x3+16≤8xB.?x∈(1,+∞),x3+16<8x
C.?x∈(1,+∞),x3+16≤8xD.?x∈(1,+∞),x3+16<8x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.阅读程序框图,该算法的功能是输出(  )
A.数列{2n-1}的前 4项的和B.数列{2n-1}的第4项
C.数列{2n}的前5项的和D.数列?{2n-1}的第5项

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在平面直角坐标系中,已知点A,B分别为x轴、y轴上的点,且|AB|=1,若点P(1,$\frac{4}{3}})$),则$|{\overrightarrow{AP}+\overrightarrow{BP}+\overrightarrow{OP}}$|的取值范围是(  )
A.[5,6]B.[5,7]C.[4,6]D.[6,9]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知A、F分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点、右焦点,点P为椭圆C上一动点,当PF⊥x轴时,AF=2PF.
(1)求椭圆C的离心率;
(2)若椭圆C存在点Q,使得四边形AOPQ是平行四边形(点P在第一象限),求直线AP与OQ的斜率之积;
(3)记圆O:x2+y2=$\frac{ab}{{a}^{2}+{b}^{2}}$为椭圆C的“关联圆”.若b=$\sqrt{3}$,过点P作椭圆C的“关联圆”的两条切线,切点为M、N,直线MN的横、纵截距分别为m、n,求证:$\frac{3}{{m}^{2}}$+$\frac{4}{{n}^{2}}$为定值.

查看答案和解析>>

同步练习册答案