精英家教网 > 高中数学 > 题目详情
2.已知A,B,C,D是空间四点,命题p:A,B,C,D四点不共面;命题q:直线AB和CD不相交,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 由A,B,C,D四点不共面,一定能得到AC,BD不相交;而由AC和BD不相交便知AC和BD平行,所以并不一定得到A,B,C,D四点不共面,所以最后得到命题p是命题q的充分不必要条件.

解答 解:(1)若A,B,C,D四点不共面;
∴AC和BD不相交;
若AC和BD相交,则能得到A,B,C,D四点共面,所以AC和BD不相交;
∴命题p是q的充分条件;
(2)若AC和BD不相交,则AC和BD可以平行;
∴A,B,C,D四点共面;
即得不到A,B,C,D四点不共面;
∴命题p不是命题q的必要条件;
∴命题p是q的充分不必要条件.
故选A.

点评 考查相交直线和平行直线可以确定一个平面,以及充分条件、必要条件、充分不必要条件的概念.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知sinx=$\frac{1}{3}$,则sin2($\frac{π}{4}$-x)=$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线l1:ax+2y-1=0与直线l2:x+(a+1)y-1=0平行,则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了让学生了解环保知识,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛.为了了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成的频率分布表和频率分布直方图,解答下列问题:
(Ⅰ)补全频率分布直方图;
分组频数频率
[50,60)40.08
[60,70)80.16
[70,80)100.20
[80,90)160.32
[90,100]120.24
合计501
(Ⅱ)根据频率分布直方图计算学生成绩的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.圆(x+2)2+(y-3)2=5的圆心坐标、半径分别是(  )
A.(2,-3)、5B.(-2,3)、5C.(-2,3)、$\sqrt{5}$D.( 3,-2)、$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{a}$=1的渐近线方程为y=±$\frac{2\sqrt{3}}{3}$x,则此双曲线的离心率是(  )
A.$\frac{\sqrt{7}}{2}$B.$\frac{\sqrt{13}}{3}$C.$\frac{5}{3}$D.$\frac{\sqrt{21}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义在R上的偶函数f(x)满足f(x+1)=$\frac{1}{f(x)}$,且f(x)在[-3,-2]上是减函数,若α,β是锐角三角形的两个内角,则(  )
A.f(sinα)>f(sinβ)B.f(cosα)>f(cosβ)C.f(sinα)>f(cosβ)D.f(sinα)<f(cosβ)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,直棱柱ABC-A1B1C1的棱长都为2,点F为棱BC的中点,点E在棱CC1上,且CC1=4CE.
(Ⅰ)求证:平面B1AF⊥面EAF;
(Ⅱ)求点C1到平面的EAF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.集合A={1,2,3,4},B={x∈N*|x2-3x-4<0},则A∪B=(  )
A.{1,2,3}B.{1,2,3,4}C.{0,1,2,3,4}D.(-1,4]

查看答案和解析>>

同步练习册答案