精英家教网 > 高中数学 > 题目详情
10.已知 cosα=-$\frac{\sqrt{3}}{2}$,且0°<α<180°,则角α的值$-\frac{5π}{6}$.

分析 根据诱导公式求解即可.

解答 解:∵cos$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$,
0°<α<180°
那么:cos(π-$\frac{π}{6}$)=cos$\frac{5π}{6}$=-cos$\frac{π}{6}$=-$\frac{\sqrt{3}}{2}$,
∵cosα=-$\frac{\sqrt{3}}{2}$,
∴α=$\frac{5π}{6}$
故答案为:$\frac{5π}{6}$.

点评 本题考察了特殊三角函数值的计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.求下列函数的导数.
(1)y=x2lnx;
(2)y=(4x+1)5
(3)y=sin3x
(4)y=5e-2x-1;
(5)y=5sinx
(6)y=sec2x;
(7)y=cot$\frac{1}{x}$;
(8)y=ln[ln(lnx)];
(9)y=2${\;}^{\frac{x}{lnx}}$;
(10)y=tanx-$\frac{1}{3}$tan3x+$\frac{1}{5}$tan5x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对任意实数λ,直线l1:x+λy-m-λn=0与圆C:x2+y2=r2总相交于两不同点,则直线l2:mx+ny=r2与圆C的位置关系是(  )
A.相离B.相交C.相切D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设k∈R,动直线l1:kx-y+k=0过定点A,动直线l2:x+ky-5-8k=0过定点B,并且l1与l2相交于点P,则|PA|+|PB|的最大值为(  )
A.$10\sqrt{2}$B.$5\sqrt{2}$C.$10\sqrt{5}$D.$5\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数 y=$\frac{x-m}{x-1}$在区间 (1,+∞)内是减函数,则实数m的取值范围是m<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.对于数列{xn},若对任意n∈N+,都有$\frac{{x}_{n}+{x}_{n+2}}{2}<{x}_{n+1}$成立,则称数列{xn}为“减差数列”.设b${\;}_{n}=2t-\frac{t{n}^{2}-n}{{2}^{n-1}}$,若数列b${\;}_{5},{b}_{6},{b}_{7},…,{b}_{n}(n≥5,n∈{N}^{+})$是“减差数列”,则实数t的取值范围是($\frac{3}{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的焦点坐标为(±4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数y=f(x)是R上的增函数,且f(m+3)≤f(5),则实数m的取值范围是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.观察下列各式:a1=1,a2=3,a3=4,a4=7,a5=11,…则a10=(  )
A.28B.76C.123D.199

查看答案和解析>>

同步练习册答案