精英家教网 > 高中数学 > 题目详情
5.若函数 y=$\frac{x-m}{x-1}$在区间 (1,+∞)内是减函数,则实数m的取值范围是m<1.

分析 若函数 y=$\frac{x-m}{x-1}$在区间 (1,+∞)内是减函数,则y′=$\frac{m-1}{(x-1)^{2}}$<0恒成立,解得答案.

解答 解:若函数 y=$\frac{x-m}{x-1}$在区间 (1,+∞)内是减函数,
 y′=$\frac{m-1}{(x-1)^{2}}$<0恒成立,
即m-1<0,
解得:m<1,
故答案为:m<1

点评 本题考查的知识点是利用导数研究函数的单调性,难度不大,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.某几何体的三视图如图所示,则该几何体的外接球的表面积为(  )
A.24πB.12πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n 14  15  16  17  18  1920
频数1020  16  16  15  13 10
以100天记录的各需求量的频数作为各需求量发生的概率.
(1)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;
(2)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x)=$\frac{2^x}{{1+{2^x}}}-\frac{1}{2}$,[x]表示不超过x的最大整数,则函数y=[f(x)]的值域为(  )
A.{0}B.{-1,0}C.{-1,0,1}D.{-2,0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1是矩形,∠BAC=90°,AA1⊥BC,AA1=AC=2AB=4,且BC1⊥A1C
(1)求证:平面ABC1⊥平面A1ACC1
(2)设D是A1C1的中点,判断并证明在线段BB1上是否存在点E,使DE∥平面ABC1,若存在,求点E到平面ABC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知 cosα=-$\frac{\sqrt{3}}{2}$,且0°<α<180°,则角α的值$-\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数$f(x)=\frac{1}{2}+{log_2}\frac{x}{1-x}$,${S_n}=\sum_{i=1}^{n-1}{f(\frac{i}{n})}$,其中n∈N*,且n≥2,则S2014=$\frac{2013}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{{\begin{array}{l}{sin\frac{5πx}{2},x≤0}\\{\frac{1}{6}-{{log}_3}x,x>0}\end{array}}$,则$f[{f({3\sqrt{3}})}]$=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设$\overrightarrow a$=(2,1),$\overrightarrow b$=(1,3),求$\overrightarrow a•\overrightarrow b$,$|{\overrightarrow a}|$及$\overrightarrow a$与$\overrightarrow b$的夹角.

查看答案和解析>>

同步练习册答案