精英家教网 > 高中数学 > 题目详情
19.已知双曲线与椭圆x2+$\frac{{y}^{2}}{2}$=1有公共焦点,且双曲线的离心率为$\sqrt{5}$,则该双曲线的渐近线方程为(  )
A.y=±2xB.y=±$\frac{2\sqrt{5}}{5}$C.y=±$\frac{\sqrt{5}}{2}$xD.y=±$\frac{1}{2}$x

分析 求出椭圆的焦点坐标得到双曲线的焦点坐标,利用双曲线的离心率,求解a,c,得到b,即可求出双曲线的渐近线方程.

解答 解:双曲线与椭圆x2+$\frac{{y}^{2}}{2}$=1有公共焦点,可得c=1,
双曲线的离心率为$\sqrt{5}$,可得a=$\frac{\sqrt{5}}{5}$,则b=$\frac{2\sqrt{5}}{5}$,
则该双曲线的渐近线方程为:y=±$\frac{1}{2}$x.
故选:D.

点评 本题考查椭圆以及双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.画边长为2的正方体ABCD-A1B1C1D1的三视图中的正视图时,若以△A1C1D所在的平面为投影面,则得到的正视图面积为(  )
A.2B.$2\sqrt{3}$C.4D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是(  )
A.16B.32C.$\frac{64}{3}$D.$\frac{32}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义域为R的函数f(x)满足f(x+3)=2f(x),当x∈[-1,2)时,f(x)=$\left\{{\begin{array}{l}{{x^2}+x,x∈[-1,0)}\\{-{{(\frac{1}{2})}^{|x-1|}},x∈[0,2)}\end{array}}$.
若存在x∈[-4,-1),使得不等式t2-3t≥4f(x)成立,则实数t的取值范围是(-∞,1]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.执行如图所示的程序框图,输出的所有值之和是37.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出以下命题:
(1)在回归直线方程$\widehat{y}$=0.5x-85中,变量x=200时,变量$\widehat{y}$的值一定是15;
(2)根据2×2列联表中的数据计算得出X2=7.469,而P(X2>6.635)≈0.01,则有99%的把握认为两个事件有关;
(3)若不等式|x+1|-|x-1|>k有解,则k的取值范围是k≤-2;
(4)随机变量ζ满足正态分布N(0,1),若P(|ξ|≤1.96)=0.950,则P(ξ<-1.96)=0.05.
其中正确的命题是(2)(将正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设m、n是两条不同的直线,α、β为两个不同的平面,则下列为真命题的是(  )
A.若m∥α,n⊥β且α⊥β,则m∥nB.若m⊥α,n⊥β且α⊥β,则m⊥n
C.若α⊥β,α∩β=m,n⊥m,则n⊥βD.若α∩β=m,n?α,m⊥n,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sin(x+$\frac{π}{2}$),g(x)=cos(x+π),则下列结论中正确的是(  )
A.将f(x)的图象向左平移$\frac{π}{2}$个单位后得到g(x)的图象
B.函数y=f(x)•g(x)的最小正周期为2π
C.函数y=f(x)•g(x)的最大值为1
D.x=$\frac{π}{2}$是函数y=f(x)•g(x)图象的一条对称轴

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.(1+2x)6展开式中含x2项的系数为(  )
A.15B.30C.60D.120

查看答案和解析>>

同步练习册答案