精英家教网 > 高中数学 > 题目详情
9.质点M的运动方程S=2t2-2为 则在时间段[2,2+△t]内的平均速度为(  )
A.8+2△tB.4+2+△tC.7+2+△tD.-8+2+△t

分析 求出在时间段[2,2+△t]内的位移的增量,根据平均速度的求解公式平均速度=位移÷时间,建立等式关系即可.

解答 解:由题意△S=2(2+△t)2-2-(2×22-2)=8△t+2(△t)2
∴在时间段[2,2+△t]内的平均速度为8+2△t,
故选A.

点评 本题主要考查了导数的运算及其几何意义,属于基础题,考查利用数学知识分析问题、解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知x1>0,x1≠1且xn+1=$\frac{{{x_n}(x_n^2+3)}}{3x_n^2+1}$(n=1,2,…).试证:“在数列{xn}中,对任意正整数n都满足xn<xn+1”,当此题用反证法证明,否定结论时,应为(  )
A.对任意的正整数n,有xn=xn+1B.存在正整数n,使xn=xn+1
C.存在正整数n,使xn≥xn+1D.存在正整数n,使xn-xn-1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-ax(a≠0),g(x)=lnx,f(x)图象与x轴交于点M(M异于原点),f(x)在M处的切线为l1,g(x-1)图象与x轴交于点N且在该点处的切线为l2,并且l1与l2平行.
(Ⅰ)求f(2)的值;
(Ⅱ)已知实数t∈R,求函数y=f[xg(x)+t],x∈[1,e]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示),解答下列问题:
分组频数频率
50.5~60.540.08
60.5~70.50.16
70.5~80.510
80.5~90.5160.32
90.5~100.5
合计50
(1)填充频率分布表中的空格;
(2)补全频率分布直方图;
(3)若成绩在80.5~90.5分的学生可以获得二等奖,问获得二等奖的学生约为多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x-lnx,g(x)=x3+x2f(x)-16x+20.
(Ⅰ)求f(x)的单调区间及极值;
(Ⅱ)求证:g(x)的图象恒在x轴的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一辆卡车宽2.7米,要经过一个半径为4.5米的半圆形隧道(双车道,不得违章),则这辆卡车的平顶车篷篷顶距离地面的高度不得超过(  )米.
A.1.4B.3.0C.3.6D.4.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}的前n项和为Sn,首项为1的等比数列{bn}的公比为q,S2=a3=b3,且a1,a3,b4成等比数列.
(1)求{an}和{bn}的通项公式;
(2)设${c_n}=k+{a_n}+{log_3}{b_n}(k∈N_{\;}^+),若\frac{1}{c_1},\frac{1}{c_2},\frac{1}{c_t}$(t≥3)成等差数列,求k和t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow a=(1,2),|\overrightarrow b|=1$,且$\overrightarrow a$与$\overrightarrow b$的夹角为60°.
(1)求与$\overrightarrow a$垂直的单位向量的坐标;
(2)求向量$\overrightarrow b-2\overrightarrow a$在$\overrightarrow a$上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等差数列{an}中,a3+3a8+a13=120,则a8=(  )
A.24B.22C.20D.25

查看答案和解析>>

同步练习册答案