精英家教网 > 高中数学 > 题目详情
7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1 (a>b>0)的短轴长为2,过上顶点E和右焦点F的直线与圆M:x2+y2-4x-2y+4=0相切.
(I)求椭圆C的标准方程;
(Ⅱ)若直线l过点(1,0),且与椭圆C交于点A,B,则在x轴上是否存在一点T(t,0)(t≠0),使得不论直线l的斜率如何变化,总有∠OTA=∠OTB (其中O为坐标原点),若存在,求出 t的值;若不存在,请说明理由.

分析 (I)由已知可得:b=1,结合直线与圆M:x2+y2-4x-2y+4=0相切.进而可得c2=3,a2=4,即得椭圆C的标准方程;
(Ⅱ)在x轴上是否存在一点T(4,0),使得不论直线l的斜率如何变化,总有∠OTA=∠OTB,联立直线与椭圆方程,结合∠OTA=∠OTB 时,直线TA,TB的斜率k1,k2和为0,可证得结论.

解答 解:(I)由已知中椭圆C的短轴长为2,可得:b=1,
则过上顶点E(0,1)和右焦点F(0,c)的直线方程为:$\frac{x}{c}+y=1$,
即x+cy-c=0,
由直线与圆M:x2+y2-4x-2y+4=0相切.
故圆心M(2,1)到直线的距离d等于半径1,
即$\frac{|2+c-c|}{\sqrt{1+{c}^{2}}}=1$,
解得:c2=3,
则a2=4,
故椭圆C的标准方程为:$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(Ⅱ)设A(x1,y1),B(x2,y2),
当直线AB的斜率不为0时,设直线 方程为:x=my+1,代入$\frac{{x}^{2}}{4}+{y}^{2}=1$得:(m2+4)y2+2my-3=0,
则y1+y2=$\frac{-2m}{{m}^{2}+4}$,y1•y2=$\frac{-3}{{m}^{2}+4}$,
设直线TA,TB的斜率分别为k1,k2
若∠OTA=∠OTB,
则k1+k2=$\frac{{y}_{1}}{{x}_{1}-t}$+$\frac{{y}_{2}}{{x}_{2}-t}$=$\frac{{y}_{1}({x}_{2}-t)+{y}_{2}({x}_{1}-t)}{({x}_{1}-t)({x}_{2}-t)}$=$\frac{{y}_{1}({my}_{2}+1-t)+{y}_{2}({my}_{1}+1-t)}{({x}_{1}-t)({x}_{2}-t)}$
=$\frac{{2y}_{1}{y}_{2}m+({y}_{1}+{y}_{2})(1-t)}{({x}_{1}-t)({x}_{2}-t)}$=0,
即2y1y2m+(y1+y2)(1-t)=$\frac{-6m}{{m}^{2}+4}$+$\frac{-2m(1-t)}{{m}^{2}+4}$=0,
解得:t=4,
当直线AB的斜率为0时,t=4也满足条件,
综上,在x轴上存在一点T(4,0),使得不论直线l的斜率如何变化,总有∠OTA=∠OTB.

点评 本题考查的知识点是椭圆的标准方程,椭圆与直线的位置关系,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在区间[0,1]上任选两个数x和y,则$y≥\sqrt{1-{x^2}}$的概率为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$1-\frac{π}{6}$D.$1-\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x∈(-$\frac{π}{2}$,0)且cosx=$\frac{4}{5}$,则tan($\frac{π}{4}$+x)=$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,a,b,c分别为角A,B,C的对边,且满足b2+c2-a2=bc.
(1)求角A的值;
(2)若a=$\sqrt{3}$,记△ABC的周长为y,试求y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知角α的终边经过点(3a-9,a+2),且sin2α≤0,sinα>0,则a的取值范围是(  )
A.(-2,3)B.[-2,3)C.(-2,3]D.[-2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1与抛物线y2=-4x的焦点重合,椭圆E的离心率为$\frac{\sqrt{2}}{2}$,过点M(m,0)做斜率存在且不为0的直线l,交椭圆E于A,C两点,点P($\frac{5}{4}$,0),且$\overrightarrow{PA}$•$\overrightarrow{PC}$为定值.
(1)求椭圆E的方程;
(2)求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(x-1)ex+ax2有两个零点
(Ⅰ)当a=1时,求f(x)的最小值;
(Ⅱ)求a的取值范围;
(Ⅲ)设x1,x2是f(x)的两个零点,证明:x1+x2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}是等差数列,其前n项和为Sn,数列{bn}是公比大于0的等比数列,且b1=-2a1=2,a3+b2=-1,S3+2b3=7.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=$\frac{(-1)^{n-1}{a}_{n}}{{b}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$),其部分图象如图所示.
(1)求函数 y=f(x)的解析式;
(2)若α∈(0,$\frac{π}{2}$),且cos($\frac{π}{2}$+α)=-$\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

同步练习册答案