精英家教网 > 高中数学 > 题目详情
7.在△ABC中,a=3,b=x,cosB=$\frac{2}{3}$,若△ABC有两解,则x的取值范围是(  )
A.(3,+∞)B.($\sqrt{5}$,+∞)C.($\sqrt{5}$,3)D.(0,$\sqrt{5}$)

分析 △ABC有两解时需要:bsinA<a<b,代入数据,求出x的范围.

解答 解:由题意得,△ABC有两解时需要:bsinA<a<b,
则xsinA<3<x,解得3<x<$\frac{3}{sinA}$,
所以x的取值范围是(3,$\frac{3}{sinA}$),
比较各个选项可得(3,+∞),
故选:A.

点评 本题考查了解三角形一题多解的问题,注意理解,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设x,y满足约束条件$\left\{\begin{array}{l}{x-\frac{1}{2}y≤1}\\{x-2y+2≥0}\\{x+y≥2}\end{array}\right.$,若mx+y取得最大值时,对应的x,y有无穷多对,则m的值是-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知圆x2+y2-4x-5=0,过点P(1,2)的最短弦所在的直线l的方程是x-2y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若直线ax+y+1=0与直线y=3x-2平行,则实数a=(  )
A.-3B.-$\frac{1}{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在等比数列{an}中,若a5,a6是方程x2-4x+1=0的两个根,则a4•a7=(  )
A.2B.-1C.1D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列各组向量中,可以作为基底的是(  )
A.$\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(5,7)B.$\overrightarrow{{e}_{1}}$=(0,0),$\overrightarrow{{e}_{2}}$=(1,-2)
C.$\overrightarrow{{e}_{1}}$=(3,5),$\overrightarrow{{e}_{2}}$=(6,10)D.$\overrightarrow{{e}_{1}}$=(2,-3),$\overrightarrow{{e}_{2}}$=($\frac{1}{2}$,-$\frac{3}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.来晋江旅游的外地游客中,若甲、乙、丙三人选择去五店市游览的概率均为$\frac{3}{5}$,且他们的选择互不影响,则这三人中至多有两人选择去五店市游览的概率为(  )
A.$\frac{36}{125}$B.$\frac{44}{125}$C.$\frac{54}{125}$D.$\frac{98}{125}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若某空间几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法不正确的是(  )
A.若“p且q”为假,则p,q至少有一个是假命题
B.命题“?x∈R,x2-x-1<0”的否定是““?x∈R,x2-x-1≥0”
C.当a<0时,幂函数y=xa在(0,+∞)上单调递减
D.“φ=$\frac{π}{2}$”是“y=sin(2x+φ)为偶函数”的充要条件

查看答案和解析>>

同步练习册答案