分析 (1)由已知结合正弦定理得:2sin2A-sinA-1=0,解得sinA的值,结合范围0<A<π,可求A的值,利用三角形内角和定理可求C的值.
(2)由题意及余弦定理可知a2+b2+ab=196,由(1)a2-ab-2b2=0,可求a=2b,进而解得a,b的值,利用三角形面积公式即可计算得解.
解答 解:(1)由已知$B=\frac{π}{6}$,a2-ab-2b2=0,
结合正弦定理得:2sin2A-sinA-1=0,
于是sinA=1或$sinA=-\frac{1}{2}$(舍).
因为0<A<π,
所以,$A=\frac{π}{2}$,$C=\frac{π}{3}$.
(2)由题意及余弦定理可知a2+b2+ab=196,
由(1)a2-ab-2b2=0,得(a+b)(a-2b)=0,即a=2b,
联立解得$b=2\sqrt{7}$,$a=4\sqrt{7}$.
所以,${S_{△ABC}}=\frac{1}{2}absinC=14\sqrt{3}$.
点评 本题主要考查了正弦定理,三角形内角和定理,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{3}$ | B. | $\sqrt{3}+1$ | C. | 3 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 18个 | B. | 19个 | C. | 20个 | D. | 21个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | $\frac{5}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com