精英家教网 > 高中数学 > 题目详情
下列函数中,在其定义域内既是奇函数又是减函数的是(  )
A、y=|x|(x∈R)
B、y=
1
x
(x≠0)
C、y=x(x∈R)
D、y=-x3(x∈R)
考点:函数奇偶性的判断,函数单调性的判断与证明
专题:函数的性质及应用
分析:根据函数奇偶性和单调性的性质进行判断即可.
解答: 解:y=|x|(x∈R)是偶函数,不满足条件,
y=
1
x
(x≠0)是奇函数,在定义域上不是单调函数,不满足条件,
y=x(x∈R)是奇函数,在定义域上是增函数,不满足条件,
y=-x3(x∈R)奇函数,在定义域上是减函数,满足条件,
故选:D
点评:本题主要考查函数奇偶性和单调性性质的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当x∈[-π,
π
2
]时,函数y=sin(x-
π
3
)的最大值为(  )
A、
1
2
B、
2
2
C、
3
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的函数f(x)的图象关于原点对称,若f(2)=3,则f(-2)等于(  )
A、3
B、
1
3
C、-3
D、-
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1
3
x3+
1
2
(a-1)x2-2a(a+1)x 在区间(-1,1)上不具有单调性,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)(
2
-1)0+(
16
9
 -
1
2
+(
8
 -
4
3
;   
(2)lg25+2lg2-log32•log23+2 log23

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若a4+a6=10,则S9=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知q是等比数列{an}的公比,则“q<1”是“数列{an}是递减数列”的
 
条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合U={x|x>0},集合A={x∈U|1-
1
x
≥0},则集合CUA=(  )
A、x|x≥1}
B、x|x≥1}
C、{x|x≥1}
D、{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x|lgx≤0},B={x|2x≤1},全集U=R,则∁U(A∪B)=(  )
A、(-∞,1)
B、(1,+∞)
C、(-∞,1]
D、[1,+∞)

查看答案和解析>>

同步练习册答案