精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=ex-ax-1(a为常数),曲线y=f(x)在与y轴的交点A处的切线斜率为-1.
(1)求a的值及函数y=f(x)的单调区间;
(2)若x1<ln2,x2>ln2,且f(x1)=f(x2),证明:x1+x2<2ln2.

分析 (1)求出函数的f′(x)=ex-a.通过f′(x)=ex-2>0,即可求解函数f(x)在区间(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增.
(2)设x>ln2,构造函数g(x)=f(x)-f(2ln2-x),分别根据函数的单调性,以及x1<ln2,x2>ln2,且f(x1)=f(x2)即可证明.

解答 解:(Ⅰ)由f(x)=ex-ax-1,得f′(x)=ex-a.
又f′(0)=1-a=-1,
∴a=2.
∴f(x)=ex-2x-1,f′(x)=ex-2.
由f'(x)=ex-2>0,得x>ln2.
∴函数f(x)在区间(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增,
(Ⅱ)证明:设x>ln2,
∴2ln2-x<ln2,
∴f(2ln2-x)=e2ln2-x-2(2ln2-x)-1=$\frac{4}{{e}^{x}}$+2x-2ln2-1,
令g(x)=f(x)-f(2ln2-x)=$\frac{4}{{e}^{x}}$-4x+4ln2,(x>ln2),
∴g′(x)=ex+4e-x-4≥0,当且仅当x=ln2时,等号成立,
∴g(x)在(ln2,+∞)上单调递增,
又g(ln2)=0,
∴当x>ln2时,g(x)=f(x)-f(2ln2-x)>g(ln2)=0,
即f(x)>f(2ln2-x),
∴f(x2)>f(2ln2-x2),
又f(x1)=f(x2),
∴f(x1)>f(2ln2-x2),
由于x2>ln2,
∴2ln2-x2<ln2,
∵x1<ln2,
由(Ⅰ)函数f(x)在区间(-∞,ln2)上单调递减,
∴x1<2ln2-x2
即x1+x2<2ln2.

点评 本题考查函数的导数的应用,构造法,函数的导数的单调性的应用,考查分析问题解决问题的能力.是难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若0≤x≤1,0≤y≤2,且2y-x≥1,则z=3y-2x+4的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校社团联即将举行一届象棋比赛,规则如下:两名选手比赛时,每局胜者得1分,负者得0分,不出现平局,且比赛进行到有一人比对方多2分或打满6局时结束.假设选手甲与选手乙比赛时,甲每局获胜的概率皆为$\frac{3}{4}$,且各局比赛胜负互不影响.
(Ⅰ)求比赛进行4局结束,且甲比乙多得2分的概率;
(Ⅱ)设ξ表示比赛结束时已比赛的局数,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,网格纸上小正方形的边长为1,粗线画出的是正方体被切割后剩余部分的几何体的三视图,则该几何体的棱长不可能为(  )
A.4$\sqrt{3}$B.$\sqrt{17}$C.$\sqrt{13}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=e2x-ax+2(a∈R)
(1)求函数f(x)的单调区间
(2)在曲线y=f(x)上是否存在两点A(x1,y1),B(x2,y2),(x1≠x2),使得该曲线在A,B两点处的切线相交于点P(0,t)?若存在,求实数t的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设四个函数:①y=x${\;}^{\frac{1}{2}}$;②y=21-x;③y=ln(x+1);④y=|1-x|.其中在区间(0,1)内单调递减的函数的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=ex(3x-1)-ax+a,其中a<1,若仅有一个整数x0,使得f(x0)<0,则a的取值范围是(  )
A.[-$\frac{2}{e}$,1)B.[-$\frac{2}{e}$,$\frac{3}{4}$)C.[$\frac{2}{e}$,$\frac{3}{4}$)D.[$\frac{2}{e}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=x2+bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{$\frac{1}{f(n)}}$}的前n项和为Tn,则T2016=(  )
A.$\frac{2014}{2015}$B.$\frac{2015}{2016}$C.$\frac{2016}{2017}$D.$\frac{2017}{2018}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={a,4},B={2,a2},且A∩B={4},则A∪B=(  )
A.{2,4}B.{-2,4}C.{-2,2,4}D.{-4,2,4}

查看答案和解析>>

同步练习册答案