精英家教网 > 高中数学 > 题目详情
13.设四个函数:①y=x${\;}^{\frac{1}{2}}$;②y=21-x;③y=ln(x+1);④y=|1-x|.其中在区间(0,1)内单调递减的函数的序号是②④.

分析 利用幂函数、指数函数、对数函数及绝对值函数的性质对①②③④逐个判断即可.

解答 解:①y=x${\;}^{\frac{1}{2}}$在(0,1)单调递增函数,
②y=21-x=2×($\frac{1}{2}$)x,单调递减函数,
③y=ln(x+1)单调递增函数,
④y=|1-x|=$\left\{\begin{array}{l}{-x+1,x≤1}\\{x-1,x>1}\end{array}\right.$,故在(0,1)上单调递减函数,
故综上所述,②④为(0,1)上的减函数.
故答案为:②④

点评 本题考查基本初等函数的单调性,熟练掌握其图象性质是解决问题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在三棱锥P-ABC中,PA=PC,BC=4,AC=2.M为BC的中点,N为AC上一点,且MN∥平面PAB,MN=$\sqrt{3}$.求证:
(1)直线AB∥平面PMN;
(2)平面ABC⊥平面PMN.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,|${\overrightarrow{AB}$+$\overrightarrow{AC}}$|=|${\overrightarrow{AB}$-$\overrightarrow{AC}}$|,AB=4,AC=2,E,F为线段BC的三等分点,则$\overrightarrow{AE}$•$\overrightarrow{AF}$=(  )
A.$\frac{10}{9}$B.4C.$\frac{40}{9}$D.$\frac{56}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=$\frac{1}{3}$x3+ax2+bx+c(a,b,c∈R)的导函数的图象如图所示:
(1)求a,b的值并写出f(x)的单调区间;
(2)函数y=f(x)有三个零点,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex-ax-1(a为常数),曲线y=f(x)在与y轴的交点A处的切线斜率为-1.
(1)求a的值及函数y=f(x)的单调区间;
(2)若x1<ln2,x2>ln2,且f(x1)=f(x2),证明:x1+x2<2ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=sinx+2{cos^2}\frac{x}{2}-1$,$g(x)=2\sqrt{2}sinxcosx$,下列结论正确的是(  )
A.函数f(x)与g(x)的最大值不同
B.函数f(x)与g(x)在$(\frac{3π}{4},\;\;\frac{5π}{4})$上都为增函数
C.函数f(x)与g(x)的图象的对称轴相同
D.将函数f(x)的图象上各点的横坐标缩短为原来的$\frac{1}{2}$,纵坐标不变,再通过平移能得到g(x)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个空间几何体的三视图如图所示,则该几何体的体积为(  )
A.4+3πB.4+4πC.4-$\frac{3π}{2}$D.4+$\frac{5π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=4cosxsin(x-$\frac{π}{6}$),x∈R.
(I)求f(x)的最小正周期和单调递增区间;
(II)在△ABC中,BC=4,sinC=2sinB,若f(x)的最大值为f(A),求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=Asin(wx+φ)(A>0,w>0,φ∈R)的部分图象如图所示,则将y=f(x)的图象向右平移π6个单位后得到g(x),得到的函数图象对称轴为x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,函数g(x)的解析式为y=sin(2x-$\frac{π}{6}$).

查看答案和解析>>

同步练习册答案