精英家教网 > 高中数学 > 题目详情
12.极坐标系中与圆ρ=6sinθ相切的一条直线的方程为(  )
A.ρsinθ=3B.ρcosθ=3C.$ρ=6sin(θ+\frac{π}{3})$D.$ρ=6sin(θ-\frac{π}{3})$

分析 把直线与圆的极坐标方程分别化为直角坐标方程,利用直线与圆的相切的充要条件即可判断出结论.

解答 解:圆ρ=6sinθ,即:ρ2=6ρsinθ,化为直角坐标方程:x2+y2=6y,配方为x2+(y-3)2=9,圆心为(0,3),半径r=3.
对于B:直线ρcosθ=3化为x=3,圆心到此直线的距离d=3=r,
因此直线与圆相切,
故选:B.

点评 本题考查了极坐标方程与直角坐标方程的互化、点的直线的距离公式、直线与圆相切的充要条件,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知点P(3,1)在矩阵A=$[\begin{array}{l}{a}&{2}\\{b}&{-1}\end{array}]$ 变换下得到点P′(5,-1).试求矩阵A和它的逆矩阵A-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow a$=(x,1),$\overrightarrow b$=(1,-1),若$\overrightarrow a$∥$\overrightarrow b$,则x=(  )
A.-1B.1C.±1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若实数a>1,则函数f(x)=loga(x2-5x+6)的单调减区间为(  )
A.($\frac{5}{2}$,+∞)B.(3,+∞)C.(-∞,$\frac{5}{2}$)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC=2,EA⊥EB.
(1)求证:AB⊥DE;
(2)求直线EC与平面ABE所成角的正弦值;
(3)线段EA上是否存在点F,使EC∥平面FBD?若存在,求出$\frac{EF}{EA}$;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设a,b为常数,f(x)=(a-3)sin x+b,g(x)=a+bcos x,且f(x)为偶函数.
(1)求a的值;
(2)若g(x)的最小值为-1,且sin b>0,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\frac{{{x^2}-4x+5}}{x}$(x>0),当且仅当x=$\sqrt{5}$时,f(x)取到最小值为2$\sqrt{5}$-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.证明:
(1)$\sqrt{3}-\sqrt{2}$>$\sqrt{5}-\sqrt{4}$
(2)$\sqrt{n+2}-\sqrt{n+1}$<$\sqrt{n+1}-\sqrt{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax3-$\frac{1}{2}$x2+c的图象过点(0,1),且在点(2,f(2))处的切线方程是6x-3y-7=0.
(1)求函数f(x)的极大值和极小值;
(2)求函数f(x)的图象与直线y=1所围成的封闭图形的面积.

查看答案和解析>>

同步练习册答案