精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数f(x)满足f(x+1)﹣f(x)=4x,且f(0)=1.
(1)求二次函数f(x)的解析式.
(2)求函数g(x)=( fx的单调增区间和值域.

【答案】
(1)解:设二次函数f(x)=ax2+bx+c(a≠0).

∵f(0)=1,∴c=1.把f(x)的表达式代入f(x+1)﹣f(x)=4x,有

a(x+1)2+b(x+1)+1﹣(ax2+bx+1)=4x.

∴2ax+a+b=4x.∴a=2,b=﹣2.

∴f(x)=2x2﹣2x+1


(2)解:g(x)=( fx=

令t=2x2﹣2x+1,则t=2x2﹣2x+1=2(x﹣ 2+

此时y=( t为减函数,

当x≥ 时,函数t=2x2﹣2x+1为增函数,此时g(x)为减函数,即函数单调递减区间为(﹣∞, ],

当x≤ 时,函数t=2x2﹣2x+1为减函数,此时g(x)为增函数,即函数单调递增区间为[ ,+∞),

∵t=2x2﹣2x+1=2(x﹣ 2+

∴0<( t≤=( =

即函数的值域为(0, ]


【解析】(1)利用待定系数法即可求二次函数f(x)的解析式.(2)利用换元法结合复合函数单调性的关系结合一元二次函数和指数函数的性质进行求解即可.
【考点精析】利用二次函数的性质对题目进行判断即可得到答案,需要熟知当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲乙两名同学参加定点投篮测试,已知两人投中的概率分别是,假设两人投篮结果相互没有影响,每人各次投球是否投中也没有影响.

(Ⅰ)若每人投球3次(必须投完),投中2次或2次以上,记为达标,求甲达标的概率;

(Ⅱ)若每人有4次投球机会,如果连续两次投中,则记为达标.达标或能断定不达标,则终止投篮.记乙本次测试投球的次数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论正确的个数是(
①命题“所有的四边形都是矩形”是特称命题;
②命题“x∈R,x2+2<0”是全称命题;
③若p:x∈R,x2+4x+4≤0,则q:x∈R,x2+4x+4≤0是全称命题.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx,g(x)=x2 . 其中x∈R.
(1)若曲线y=f(x)与y=g(x)在x=1处的切线相互平行,求两平行直线间的距离;
(2)若f(x)≤g(x)﹣1对任意x>0恒成立,求实数a的值;
(3)当a<0时,对于函数h(x)=f(x)﹣g(x)+1,记在h(x)图象上任取两点A、B连线的斜率为kAB , 若|kAB|≥1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(只填正确说法序号)
①若集合A={y|y=x﹣1},B={y|y=x2﹣1},则A∩B={(0,﹣1),(1,0)};
是函数解析式;
是非奇非偶函数;
④设二次函数f(x)=ax2+bx+c(a≠0),若f(x1)=f(x2)(x1≠x2),则f(x1+x2)=c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:
30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.
根据上述数据得到样本的频率分布表如下:

分组

频数

频率

[25,30]

3

0.12

(30,35]

5

0.20

(35,40]

8

0.32

(40,45]

n1

f1

(45,50]

n2

f2


(1)确定样本频率分布表中n1 , n2 , f1和f2的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)是满足f(x)+f(﹣x)=0,在(﹣∞,0)上 ,且f(5)=0,则使f(x)<0的x取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)既是奇函数,又是周期为3的周期函数,当x∈(0, )时,f(x)=sinπx,f( )=0,则函数f(x)在区间[0,6]上的零点个数是(
A.9
B.7
C.5
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线C的中心在原点,右焦点为 ,渐近线方程为
(1)求双曲线C的方程;
(2)设直线l:y=kx+1与双曲线C交于A、B两点,问:当k为何值时,以AB为直径的圆过原点.

查看答案和解析>>

同步练习册答案