分析 ①根据空间向量的坐标运算和向量的数量积的运算和向量的垂直即可求出.
②直接根据排列数公式,化简等式为二次方程,注意n的范围,求出n,代入即可得到logn25的值.
解答 解:①$\overrightarrow a$=(1,1,0),$\overrightarrow b$=(-1,0,2),
∴k$\overrightarrow a$+$\overrightarrow b$=(k-1,k,2),2$\overrightarrow a$-$\overrightarrow b$=(3,2,-2),
∵k$\overrightarrow a$+$\overrightarrow b$与2$\overrightarrow a$-$\overrightarrow b$互相垂直,
∴3(k-1)+2k+2×(-2)=0,
解得k=$\frac{7}{5}$,
②解:A2n3=2An+14 可得2n(2n-1)(2n-2)=2(n+1)n(n-1)(n-2)
即:4n-2=n2-n-2
解得n=5,所以logn25=log525=2.
点评 本题考查排列及排列数公式以及向量的数量积的运算,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (2,2) | B. | (1,$\frac{{\sqrt{2}}}{2}$ ) | C. | (-$\sqrt{2}$,$\sqrt{2}$) | D. | ($\sqrt{2}$,-$\sqrt{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p为真 | B. | q为真 | C. | p∧q为假 | D. | p∨q为真 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 125 | B. | 5 625 | C. | 0 625 | D. | 8 125 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com