精英家教网 > 高中数学 > 题目详情
曲线y=sinx在点P(0,0)处的切线方程
 
考点:利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:先对函数y=sinx进行求导,再根据导数的几何意义求出曲线y=sinx在点x=π处的切线斜率,进而可得到切线方程.
解答: 解:∵y′=cosx,
∴切线的斜率k=y′|x=0=1,
∴切线方程为y-0=x-0,
即x-y=0.
故答案为:x-y=0.
点评:本题主要考查导数的几何意义,考查函数的求导运算.导数是由高等数学下放到高中数学的新内容,是高考的热点问题,每年必考,一定要强化复习.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集U={1,2,3,4,5},A={1,2,5},B={2,3,5},则(∁UA)∩B等于(  )
A、{2,3}
B、{2,5}
C、{3}
D、{2,3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的各项均是正数,其前n项和为Sn,满足(p-1)Sn=p2-an,其中p为正常数,且p≠1.设bn=
1
2-logpan
(n∈N*)

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bnbn+2}的前n项和为Tn,是否存在正整数m,使得Tn
1
bmbm+1
对于n∈N*恒成立,若存在,求出m的最小值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是奇函数且满足f(
3
2
-x)=f(x),f(-2)=-3,若数列{an}的前n项和Sn满足
Sn
n
=
2an
n
+1,则f(a5)+f(a6)=(  )
A、-3B、-2C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=a2=2,an+2=5an+1-6an,则a3=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

把正奇数数列依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号一个数,…,依次循环的规律分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第50个括号内各数之和为(  )
A、98B、197
C、390D、392

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-2x+a有零点,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1,a2=2,an+1=2an+1(n≥2),则a21=(  )
A、3•220-1
B、3•219-1
C、219-1
D、220-1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:
n
p1+p2+…+pn
为n个正数p1,p2,…,pn的“均倒数”,已知数列{an}的前n项的“均倒数”为1+
an
Sn
其中Sn是数列{an}的前n项和,求数列{an}的通项公式及前n项和公式.

查看答案和解析>>

同步练习册答案