精英家教网 > 高中数学 > 题目详情
把正奇数数列依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号一个数,…,依次循环的规律分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第50个括号内各数之和为(  )
A、98B、197
C、390D、392
考点:归纳推理
专题:推理和证明
分析:由题意将三个括号作为一组,判断出第50个括号应为第17组的第二个括号,由题意和奇数对应数列的通项公式,求出第50个括号内各个数,再求出第50个括号内各数之和.
解答: 解:由题意可得,将三个括号作为一组,
则由50=16×3+2,第50个括号应为第17组的第二个括号,
即50个括号中应有两个数,
因为每组中有6个数,
所以第48个括号的最后一个数为数列{2n-1}的第16×6=96项,
第50个括号的第一个数为数列{2n-1}的第16×6+2=98项,
即2×98-1=195,第二个数是2×99-1=197,
所以第50个括号内各数之和为195+197=392,
故选:D.
点评:本题考查了归纳推理,等差数列的通项公式,难点在于发现其中的规律,考查观察、分析、归纳能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正整数a,b,c满足a+b2-2c-2=0,3a2-8b+c=0,则abc的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,已知S1=1,S2=2,且Sn+1+2Sn-1=3Sn,(n≥2且n∈N*),则此数列为(  )
A、等差数列
B、等比数列
C、从第二项起为等差数列
D、从第二项起为等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集上的函数f(x)的图象关于点(-
3
4
,0)对称,且满足f(x)+f(x-
3
2
)=0,f(-1)=3,f(0)=-6
(1)求证f(x)是以3为周期的函数;
(2)求证f(x)是偶函数;
(3)求f(1)+f(2)+f(3)+…+f(2012)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=sinx在点P(0,0)处的切线方程
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=2x2及点P(1,2),则在点P处的曲线y=2x2的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2x-1
+a是奇函数
(1)求常数a的值
(2)判断f(x)的单调性并给出证明
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(2,-1,3)且与
x-1
-1
=
y
0
=
z-2
2
垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列不等式:1+
1
22
3
2
,1+
1
22
+
1
32
5
3
,1+
1
22
+
1
32
+
1
42
7
4
…按照此规律,第六个不等式为
 

查看答案和解析>>

同步练习册答案