| A. | (0,$\frac{1}{2}$] | B. | (0,$\frac{\sqrt{3}}{2}$] | C. | [$\frac{1}{2}$,1) | D. | [$\frac{\sqrt{3}}{2}$,1) |
分析 利用正弦定理化简已知的不等式,再利用余弦定理表示出cosA,将得出的不等式变形后代入表示出的cosA中,得出cosA的范围,由A为三角形的内角,根据余弦函数的图象与性质即可求出A的取值范围,进而可求sinA的取值范围.
解答 解:利用正弦定理化简sin2A≤sin2B+sin2C-sinBsinC得:a2≤b2+c2-bc,
变形得:b2+c2-a2≥bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$≥$\frac{bc}{2bc}$=$\frac{1}{2}$,
又A为三角形的内角,
则A的取值范围是(0,60°],可得:sinA的取值范围是(0,$\frac{\sqrt{3}}{2}$].
故选:B.
点评 此题考查了正弦、余弦定理,特殊角的三角函数值,以及余弦函数的图象与性质,熟练掌握正弦、余弦定理是解本题的关键,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com