精英家教网 > 高中数学 > 题目详情
14.定义在R上的函数f(x)的导函数是f′(x),若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f′(x)<0,设a=f($\frac{1}{e}$)(e为自然对数的底数)、b=f($\sqrt{2}$)、c=f(log28),则(  )
A.c<a<bB.a>b>cC.a<b<cD.a<c<b

分析 先由x∈(-∞,1)时,(x-1)f′(x)<0,得函数f(x)在(-∞,1)上为增函数;又f(x)=f(2-x)得f(x)图象关于x=1对称,则 f(x)在(1,+∞)上为减函数,然后将f($\frac{1}{e}$),f($\sqrt{2}$),f(log28)化到同一单调区间内比较即可.

解答 解:∵x∈(-∞,1)时,
∴(x-1)f′(x)<0,
∴f′(x)>0,
∴f(x)在(-∞,1)上为增函数,
又∵f(x)=f(2-x),
∴f(x)图象关于x=1对称,
∴f(x)在(1,+∞)上为减函数,
又∵a=f($\frac{1}{e}$)=f(2-$\frac{1}{e}$),b=f($\sqrt{2}$),c=f(log28)=f(3),
∴3>2-$\frac{1}{e}$>$\sqrt{2}$,
∴c<a<b.
故选:A.

点评 解题的关键为由f(x)=f(2-x)得函数图象关于x=1对称,以及利用导数符号确定函数的单调性,属于常用解题技巧.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知数列{an}满足an+2=an+1-an,且a1=2,a2=3,Sn为数列{an}的前n项和,则S2016的值为(  )
A.0B.2C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,OP平分∠MON,AH⊥OP于H,B是AO的中点,求证:BH∥ON.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若二次函数f(x)的图象与x轴交于点A(-2,0),对称轴是x=-1,顶点到x轴的距离为2,则函数的解析式为y=-2(x+1)2+2或y=2(x+1)2-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴,过点A(4,a)作圆C的一条切线,切点为B,则|AB|=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知{an}是递增的等差数列,a2+a5=16,且a2-1,a4-1,a7+1成等比数列.
(1)求an
(2)若{an}的前n项和为Sn,证明:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设$\overrightarrow{a}$=(2,x),$\overrightarrow{b}$=(-4,5).若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ为钝角,则x的取值范围是x<$\frac{8}{5}$且x≠-$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)是定义在区间(0,+∞)的可导函数,其导函数为f′(x),且满足xf′(x)>3f(x),则不等式8f(x)>f(2)x3的解集为(  )
A.{x|x>3}B.{x|x>0}C.{x|x>2}D.{x|0<x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=a|x-2|恒有f(f(x))<f(x),则实数a的取值范围是(-∞,-1].

查看答案和解析>>

同步练习册答案