精英家教网 > 高中数学 > 题目详情
9.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴,过点A(4,a)作圆C的一条切线,切点为B,则|AB|=6.

分析 求出圆的标准方程可得圆心和半径,由直线l:x+ay-1=0经过圆C的圆心(2,1),求得a的值,可得点A的坐标,再利用直线和圆相切的性质求得|AB|的值.

解答 解:∵圆C:x2+y2-4x-2y+1=0,即(x-2)2+(y-1)2 =4,
表示以C(2,1)为圆心、半径等于2的圆.
由题意可得,直线l:x+ay-1=0经过圆C的圆心(2,1),
故有2+a-1=0,∴a=-1,点A(-4,-1).
∵AC=$\sqrt{(-4-2)^{2}+(-1-1)^{2}}$=2$\sqrt{10}$,CB=R=2,
∴切线的长|AB|=$\sqrt{40-4}$=6.
故答案为:6.

点评 本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知数列$\frac{1}{1×2},\frac{1}{2×3},\frac{1}{3×4},…,\frac{1}{{n×({n+1})}},…$,下面各数中是此数列中的项的是(  )
A.$\frac{1}{35}$B.$\frac{1}{42}$C.$\frac{1}{48}$D.$\frac{1}{54}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,在正方体ABCD-A1B1C1D1中,
(1)判断直线A1B1与DC是否平行?
(2)判断直线A1A与平面ABCD是否垂直?
(3)判断直线BC1与平面ADD1A1是否平行?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若f(x)=cos$\frac{π}{6}$,则f′(x)等于(  )
A.$\frac{\sqrt{3}}{2}$B.0C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和Sn=3n2+n,求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义在R上的函数f(x)的导函数是f′(x),若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f′(x)<0,设a=f($\frac{1}{e}$)(e为自然对数的底数)、b=f($\sqrt{2}$)、c=f(log28),则(  )
A.c<a<bB.a>b>cC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知递增等差数列{an}满足a1+a5=4,前3项的积为8,求等差数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数g(x)=$\frac{2}{x}$+lnx,f(x)=mx-$\frac{m-2}{x}$-lnx,m∈R.
(1)求函数g(x)的单调区间和极值;
(2)若f(x)-g(x)在[1,+∞)上为单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.以正方体ABCD-A1B1C1D1的顶点D为坐标原点O,如图建立空间直角坐标系,则与$\overrightarrow{D{B_1}}$共线的向量的坐标可以是(  )
A.(2,-2,2)B.(-2,-2,2)C.(-2,2,2)D.(-2,-2,-2)

查看答案和解析>>

同步练习册答案