精英家教网 > 高中数学 > 题目详情
3.若实数x,y满足条件$\left\{\begin{array}{l}{x+2y-5≤0}\\{2x+y-4≤0}\\{x≥0}\\{y≥1}\end{array}\right.$,目标函数z=x+y,则其最大值是3.

分析 先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线z=x+y过点(1,2)时,z最大值即可.

解答 解:先根据约束条件画出可行域如图,

由$\left\{\begin{array}{l}{x+2y-5=0}\\{2x+y-4=0}\end{array}\right.$,解得:A(1,2)
由z=x+y,得:y=-x+z,
由图知,当直线过点A(1,2)时,z最大值为3.
故答案为:3.

点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=\left\{\begin{array}{l}1,\;\;-1≤x≤0\\ \frac{1}{x},\;\;x>0\end{array}\right.$,则使方程x+f(x)=m有解的实数m的取值范围是(  )
A.(-∞,0)∪(1,2)B.[0,+∞)C.(-∞,1]∪[2,+∞)D.[0,1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“$?{x_0}∈{C_R}Q,x_0^2∈Q$”的否定是(  )
A.$?{x_0}∉{C_R}Q,x_0^2∈Q$B.$?{x_0}∈{C_R}Q,x_0^2∉Q$
C.$?{x_0}∈{C_R}Q,x_0^2∈Q$D.$?{x_0}∈{C_R}Q,x_0^2∉Q$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题P:?x∈R,3x2+1>0,则¬p为(  )
A.?x∈R,3x2+1≤0B.?x∈R,3x2+1≤0C.?x∈R,3x2+1<0D.?x∈R,3x2+1<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC的三内角为A、B、C,且其对边分别为a、b、c,若cosAcosC-sinAsinC=$\frac{1}{2}$.
(Ⅰ)求B; 
(Ⅱ)若b=2$\sqrt{3}$,△ABC的面积为$\sqrt{3}$,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线${C_1}:y={x^2}$与${C_2}:{y^2}=x$在第一象限内的交点为P.
(1)求过点P且与曲线C1相切的直线方程l;
(2)求l与曲线C2所围图形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|2x≤4},B={x|log2x>0},则A∩B=(  )
A.[1,2]B.(1,2]C.(0,1)D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知α>0且a≠1,函数f(x)=$\left\{\begin{array}{l}{(a-1)x+3a-4,(x≤0)}\\{{a}^{x},(x>0)}\end{array}\right.$满足对任意实数x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)成立,则a的取值范围是(  )
A.$(1,\frac{5}{3}]$B.(0,1)C.(1,+∞)D.$[\frac{5}{3},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.集合A={x|y=log2(x+1)},B={-1,0,1},则A∩B等于(  )
A.{0,1}B.{-1,0,1}C.{0}D.{1}

查看答案和解析>>

同步练习册答案