精英家教网 > 高中数学 > 题目详情
14.“$?{x_0}∈{C_R}Q,x_0^2∈Q$”的否定是(  )
A.$?{x_0}∉{C_R}Q,x_0^2∈Q$B.$?{x_0}∈{C_R}Q,x_0^2∉Q$
C.$?{x_0}∈{C_R}Q,x_0^2∈Q$D.$?{x_0}∈{C_R}Q,x_0^2∉Q$

分析 利用特称命题的否定是全程命题写出结果即可.

解答 解:因为特称命题的否定是全程命题,所以,“$?{x_0}∈{C_R}Q,x_0^2∈Q$”的否定是:$?{x_0}∈{C_R}Q,x_0^2∉Q$.
故选:D.

点评 本题考查命题的否定,特称命题与全程命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若f(x)是奇函数,且x>0时,f(x)=-x${\;}^{\frac{1}{2}}$,则当x<0时,f(x)的解析式是(  )
A.f(x)=x${\;}^{\frac{1}{2}}$B.f(x)=(-x)${\;}^{\frac{1}{2}}$C.f(x)=-(-x)${\;}^{\frac{1}{2}}$D.f(x)=-x${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若实数x,y满足$\left\{\begin{array}{l}x+2y-4<0\\ x>0\\ y>0\end{array}\right.$,则$z=\frac{y+2}{x-1}$的取值范围为(  )
A.$(-∞,-4)∪(\frac{2}{3},+∞)$B.$(-∞,-2)∪(\frac{2}{3},+∞)$C.$(-2,\frac{2}{3})$D.$(-4,\frac{2}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设M是圆P:(x+5)2+y2=36上一动点,点Q的坐标为(5,0),若线段MQ的垂直平分线交直线PM于点N,则点N的轨迹方程为(  )
A.$\frac{x^2}{25}+\frac{y^2}{9}=1$B.$\frac{x^2}{16}+\frac{y^2}{9}=1$C.$\frac{x^2}{25}-\frac{y^2}{9}=1$D.$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在一次试验中,测得(x,y)的四组值分别是A(1,1.5),B(2,3),C(3,4),D(4,5.5),则y
与x之间的回归直线方程为(  )
A.$\hat y=x+1$B.$\hat y=x+2$C.$\hat y=2x+1$D.$\hat y=x-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.复数i-i2在复平面内表示的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在等比数列{an}中,a2+a4=4,a3+a5=8,则a5+a7=(  )
A.32B.16C.64D.128

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若实数x,y满足条件$\left\{\begin{array}{l}{x+2y-5≤0}\\{2x+y-4≤0}\\{x≥0}\\{y≥1}\end{array}\right.$,目标函数z=x+y,则其最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正四面体ABCD及其内切球O,经过该四面体的棱AD及底面ABC上的高DH作截面,交BC于点E,则截面图形正确的是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案