精英家教网 > 高中数学 > 题目详情
4.已知正四面体ABCD及其内切球O,经过该四面体的棱AD及底面ABC上的高DH作截面,交BC于点E,则截面图形正确的是(  )
A.B.C.D.

分析 根据题意,画出正四面体ABCD及其内切球O,作出截面ADE所表示的图形即可.

解答 解:画出图形,如图所示;

正四面体ABCD及其内切球O,经过该四面体的棱AD及底面ABC上的高DH作截面,交BC于点E,
则截面ADE所表示的图形是:
故选:B.

点评 本题考查了空间几何体与平面截面图的应用问题,也考查了空间想象能力的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.“$?{x_0}∈{C_R}Q,x_0^2∈Q$”的否定是(  )
A.$?{x_0}∉{C_R}Q,x_0^2∈Q$B.$?{x_0}∈{C_R}Q,x_0^2∉Q$
C.$?{x_0}∈{C_R}Q,x_0^2∈Q$D.$?{x_0}∈{C_R}Q,x_0^2∉Q$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|2x≤4},B={x|log2x>0},则A∩B=(  )
A.[1,2]B.(1,2]C.(0,1)D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知α>0且a≠1,函数f(x)=$\left\{\begin{array}{l}{(a-1)x+3a-4,(x≤0)}\\{{a}^{x},(x>0)}\end{array}\right.$满足对任意实数x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)成立,则a的取值范围是(  )
A.$(1,\frac{5}{3}]$B.(0,1)C.(1,+∞)D.$[\frac{5}{3},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在Rt△ABC中,∠ACB=90°,$sinA=\frac{{2\sqrt{5}}}{5}$,则tan2B等于(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$-\frac{4}{3}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=loga(ax-2)在[1,3]上单调递增,则a的取值范围是(  )
A.(1,+∞)B.(0,2)C.(0,$\frac{2}{3}$)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设(2x-1)n=a0+a1x+a2x2+…+anxn展开式中只有第5项的二项式系数最大.
(1)求n;
(2)求|a0|+|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.集合A={x|y=log2(x+1)},B={-1,0,1},则A∩B等于(  )
A.{0,1}B.{-1,0,1}C.{0}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求出函数y=sin($\frac{π}{3}$-$\frac{1}{2}$x),x∈[-2π,2π]的单调递增区间.

查看答案和解析>>

同步练习册答案