精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)sin(x+$\frac{π}{4}$).
(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;
(Ⅱ)讨论函数f(x)在区间[-$\frac{π}{12}$,$\frac{π}{2}$]上单调性并求出值域.

分析 (Ⅰ)化简函数,再求函数f(x)的最小正周期和图象的对称轴方程;
(Ⅱ)利用正弦函数的性质,讨论函数f(x)在区间[-$\frac{π}{12}$,$\frac{π}{2}$]上单调性并求出的值域.

解答 解:(Ⅰ)$f(x)=cos(2x-\frac{π}{3})+$$2sin(x-\frac{π}{4})sin(x+\frac{π}{4})$=$\frac{1}{2}cos2x+\frac{{\sqrt{3}}}{2}sin2x+$(sinx-cosx)(sinx+cosx)=$\frac{1}{2}cos2x+\frac{{\sqrt{3}}}{2}sin2x+{sin^2}x-{cos^2}x$=$\frac{1}{2}cos2x+\frac{{\sqrt{3}}}{2}sin2x-cos2x$=$sin(2x-\frac{π}{6})$.
∴周期$T=\frac{2π}{2}=π$.
由$2x-\frac{π}{6}=kπ+\frac{π}{2}(k∈Z)$,得$x=\frac{kπ}{2}+\frac{π}{3}(k∈Z)$.
∴函数图象的对称轴方程为$x=\frac{kπ}{2}+\frac{π}{3}(k∈Z)$.
(Ⅱ)∵$x∈[-\frac{π}{12},\frac{π}{2}]$,∴$2x-\frac{π}{6}∈[-\frac{π}{3},\frac{5π}{6}]$.
$f(x)=sin(2x-\frac{π}{6})$在区间$[-\frac{π}{12},\frac{π}{3}]$上单调递增,在区间$[\frac{π}{3},\frac{π}{2}]$上单调递减,
当$x=\frac{π}{3}$时,f(x)取最大值1.
∵$f(-\frac{π}{12})=-\frac{{\sqrt{3}}}{2}<f(\frac{π}{2})=\frac{1}{2}$.
∴$x=-\frac{π}{12}$,$f{(x)_{max}}=-\frac{{\sqrt{3}}}{2}$.
所以值域为$[-\frac{{\sqrt{3}}}{2},1]$.

点评 本题考查三角函数的图象与性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知n∈N+,则$\frac{1}{2!}+\frac{2}{3!}+…+\frac{n}{(n+1)!}$=1-$\frac{1}{(n+1)!}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,几何体的表面积为(  )
A.4+2($\sqrt{2}$+$\sqrt{3}$)B.6+2($\sqrt{2}$+$\sqrt{5}$)C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a,b∈R,直线l:y=ax+b,圆C:x2+y2=1.命题p:直线l与圆C相交;命题q:a>$\sqrt{{b^2}-1}$.则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=lnx+$\frac{m}{x}$,m∈R.
(Ⅰ)当m=e时,求函数f(x)的极小值;
(Ⅱ)讨论函数g(x)=f'(x)-$\frac{x}{3}$零点的个数;
(Ⅲ)若对任意的b>a>0,$\frac{f(b)-f(a)}{b-a}$<1恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数y=f(x)在区间[0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先生产两组(每组N个)区间[0,1]上均匀随机数x1,x2,…,xN和y1,y2,…,yN,由此得到N个点(xi,yi)(i=1,2,…,N),再数出其中满足yi≤f(xi)(i=1,2,…,N)的点数N1,那么由随机模拟方法可得S的近似值为$\frac{{N}_{1}}{N}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为$\sqrt{5}$,圆心在x轴的正半轴上的圆M与双曲线的渐近线相切,且圆M的半径为2,则以圆M的圆心为焦点的抛物线的标准方程为(  )
A.y2=8$\sqrt{5}$xB.y2=4$\sqrt{5}$xC.y2=2$\sqrt{5}$xD.y2=$\sqrt{5}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.
某市环保局从市区2016年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)
(Ⅰ)从这15天的数据中任取一天,求这天空气质量达到一级的概率;
(Ⅱ)从这15天的数据中任取3天的数据,记ξ表示其中空气质量达到一级的天数,求ξ的分布列;
(Ⅲ)以这15天的PM2.5的日均值来估计一年的空气质量情况,(一年按360天来计算),则一年中大约有多少天的空气质量达到一级.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知Sn是等差数列{an}的前n项和,且S6>S7>S5,给出下列五个命题:
①公差d<0         
②S11<0③S12>0
④数列{Sn}中的最大项为S11
⑤|a6|>|a7|
其中正确命题的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案