精英家教网 > 高中数学 > 题目详情
3.一段繁忙的公路有大量汽车通过,设每一辆汽车在一天的某段时间内出事故的概率为0.00001,若每天在该段时间内有1000辆汽车通过,则出事故的车辆数不少于2的概率是多少?

分析 设该天发生事故的次数为X,则X~B(1000,0.00001),由此能求出出事故的车辆数不少于2的概率.

解答 解:设该天发生事故的次数为X,则X~B(1000,0.00001),
∴出事故的车辆数不少于2的概率:
P(X≥2)=1-P(X=0)-P(X=1)
=1-(1-0.00001)1000-C${\;}_{1000}^{1}$(0.00001)(1-0.00001)999
≈1-0.90483289356-0.09049233859
≈0.00467.

点评 本题考查概率的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=0,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,则|3$\overrightarrow{a}$-2$\overrightarrow{b}$|=(  )
A.0B.6$\sqrt{2}$C.36D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某程序框图如图所示,现输入如下四个函数,则可以输出的函数是(  
A.f(x)=lg$\frac{x-1}{x+1}$B.f(x)=ex-$\frac{1}{{e}^{x}}$C.f(x)=$\frac{1}{{x}^{3}}$D.f(x)=x2-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>b>0)与两条平行直线l1:y=x+a与l2:y=x-a相交所得的平行四边形的面积为6b2.则双曲线的离心率是(  )
A.$\sqrt{2}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知满足$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{2x-y-m≤0}\\{\;}\end{array}\right.$,若目标函数z=3x+y的最大值为10,则z的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与直线3x-y+1=0平行,F1、F2是双曲线C的左、右焦点,M是双曲线C上一点,且|MF1|=$\frac{3}{2}$|MF2|=6,则双曲线的焦距长为(  )
A.6B.2C.2$\sqrt{10}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点F作平行于渐近线的两直线与双曲线分别交于A、B两点,若|AB|=2a,则双曲线离心率e的值所在区间为(  )
A.(1,$\sqrt{2}$)B.($\sqrt{2}$,$\sqrt{3}$)C.($\sqrt{3}$,2)D.(2,$\sqrt{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax2+lnx的导数f′(x).
(1)求f(1)+f′(1);
(2)若曲线y=f(x)存在垂直于y轴的切线,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知sinβ+cosβ=$\frac{\sqrt{5}}{5}$,且π<β<2π.
(1)求sinβcosβ、sinβ-cosβ的值;
(2)求sinβ、cosβ、tanβ的值.

查看答案和解析>>

同步练习册答案