精英家教网 > 高中数学 > 题目详情
14.某程序框图如图所示,现输入如下四个函数,则可以输出的函数是(  
A.f(x)=lg$\frac{x-1}{x+1}$B.f(x)=ex-$\frac{1}{{e}^{x}}$C.f(x)=$\frac{1}{{x}^{3}}$D.f(x)=x2-4

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件①f(x)存在零点,②f(x)+f(-x)=0,即函数f(x)为奇函数,即函数图象与x轴有交点.逐一分析四个答案中给出的函数的性质,不难得到正确答案.

解答 解:模拟执行程序,可知该程序的作用是输出满足条件①f(x)存在零点,②f(x)+f(-x)=0的函数f(x),
即函数f(x)为奇函数,即函数图象与x轴有交点.
由于:A:f(x)=lg$\frac{x-1}{x+1}$、C:f(x)=$\frac{1}{{x}^{3}}$,D、f(x)=x2-4不是奇函数,故不满足条件②f(x)+f(-x)=0,
而B:f(x)=ex-$\frac{1}{{e}^{x}}$既是奇函数,而且函数图象与x也有交点,
故B:f(x)=ex-$\frac{1}{{e}^{x}}$符合输出的条件.
故选:B.

点评 本题主要考查程序框图的识别和应用,根据程序满足的条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.如图,B是AC的中点,$\overrightarrow{BE}$=2$\overrightarrow{OB}$,P是矩形BCDE内(含边界)的一点,且$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R).则x-y的最大值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=ax-2-lnx(a∈R).
(1)若f(x)在点(e,f(e))处的切线斜率为$\frac{1}{e}$,求a的值;
(2)当a>0时,求f(x)的单调区间;
(3)若g(x)=ax-ex,求证:在x>0时,f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{x}{1+x}$-aln(1+x)(a∈R),g(x)=x2emx(m∈R).
(1)当a=1,求函数f(x)的最大值
(2)当a<0,且对任意实数x1,x2∈[0,2],f(x1)+1≥g(x2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-4y2=1(a>0)的右顶点到其一条渐近线的距离等于$\frac{\sqrt{3}}{4}$,抛物线E:y2=2px的焦点与双曲线C的右焦点重合,直线l的方程为x-y+4=0,在抛物线上有一动点M到y轴的距离为d1,到直线l的距离为d2,则d1+d2的最小值为(  )
A.$\frac{5\sqrt{2}}{2}$+2B.$\frac{5\sqrt{2}}{2}$+1C.$\frac{5\sqrt{2}}{2}$-2D.$\frac{5\sqrt{2}}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow a=(x,-1)$,$\overrightarrow b=(x,4)$,其中x∈R.则“x=2”是“$\overrightarrow a⊥\overrightarrow b$”成立的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,A,B,C所对的边分别为a,b,c,A为钝角,sinBcosC+cosBsinC=$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求A;
(Ⅱ)若a=2$\sqrt{7}$且b>c,△ABC的面积为2$\sqrt{3}$,求边b和c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.一段繁忙的公路有大量汽车通过,设每一辆汽车在一天的某段时间内出事故的概率为0.00001,若每天在该段时间内有1000辆汽车通过,则出事故的车辆数不少于2的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.己知数列{Sn}的前n项和为an=n2+2n.
(1)求数列Sn的通项;
(2)求数列{${2}^{{S}_{n}}$}的前n项和.

查看答案和解析>>

同步练习册答案