精英家教网 > 高中数学 > 题目详情
4.己知数列{Sn}的前n项和为an=n2+2n.
(1)求数列Sn的通项;
(2)求数列{${2}^{{S}_{n}}$}的前n项和.

分析 (1)分当n=1时与当n≥2时讨论,从而求通项公式;
(2)化简${2}^{{S}_{n}}$=22n+1=2•4n,从而可判断数列{${2}^{{S}_{n}}$}是以8为首项,4为公比的等比数列,从而解得.

解答 解:(1)当n=1时,S1=a1=12+2=3,
当n≥2时,an=n2+2n,an-1=(n-1)2+2(n-1);
∴Sn=an-an-1=(n2+2n)-((n-1)2+2(n-1))
=2n+1,
S1=3也满足Sn=2n+1,
故数列{Sn}的通项公式为Sn=2n+1;
(2)∵Sn=2n+1,∴${2}^{{S}_{n}}$=22n+1=2•4n
故数列{${2}^{{S}_{n}}$}是以8为首项,4为公比的等比数列,
故其前n项和为$\frac{8(1-{4}^{n})}{1-4}$=$\frac{8}{3}$(4n-1).

点评 本题考查了等比数列与等差数列的性质的判断与应用,同时考查了分类讨论的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.某程序框图如图所示,现输入如下四个函数,则可以输出的函数是(  
A.f(x)=lg$\frac{x-1}{x+1}$B.f(x)=ex-$\frac{1}{{e}^{x}}$C.f(x)=$\frac{1}{{x}^{3}}$D.f(x)=x2-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点F作平行于渐近线的两直线与双曲线分别交于A、B两点,若|AB|=2a,则双曲线离心率e的值所在区间为(  )
A.(1,$\sqrt{2}$)B.($\sqrt{2}$,$\sqrt{3}$)C.($\sqrt{3}$,2)D.(2,$\sqrt{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax2+lnx的导数f′(x).
(1)求f(1)+f′(1);
(2)若曲线y=f(x)存在垂直于y轴的切线,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}中,a1=1,$\frac{{a}_{n+1}}{{a}_{n}}$=1+$\frac{1}{n}$,则数列{an}的通项公式为an=n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知3A${\;}_{x}^{3}$=$2{A}_{x+1}^{2}$$+6{A}_{x}^{2}$,则x等于(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.己知函数f(x)=2cos2x+$\sqrt{3}$cosx•sinx+sin2x,x∈R,求函数的最小正周期和单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知sinβ+cosβ=$\frac{\sqrt{5}}{5}$,且π<β<2π.
(1)求sinβcosβ、sinβ-cosβ的值;
(2)求sinβ、cosβ、tanβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.三个人坐在一排7个座位上,若3个人中间没有空位,有30种坐法.若4个空位中恰有3个空位连在一起,有72种坐法.

查看答案和解析>>

同步练习册答案