精英家教网 > 高中数学 > 题目详情
复数
2a+i
-1+2i
(i是虚数单位)为纯虚数,则实数a的值为(  )
A、
1
4
B、-
1
4
C、1
D、-1
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:利用复数代数形式的乘除运算化简,然后由实部等于0且虚部不等于0求解a的值.
解答: 解:
2a+i
-1+2i
=
(2a+i)(-1-2i)
(-1+2i)(-1-2i)
=
(-2a+2)+(-4a-1)i
5
为纯虚数,
-2a+2=0
-4a-1≠0
,解得:a=1.
故选:C.
点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,BC=10,周长为25,求cosA的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-2≤x≤4},B={x|x>a}.
(1)若A∩B≠A,求实数a的取值范围;
(2)若A∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求使满足方程x2+y2+2i=r2+(x-y)i的实数x与y存在的正数r的集合,并在r=
2
时,求满足上述方程的x与y及复数x+yi.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
tan(π-α)sin2(α+
π
2
)cos(2π-α)
cos3(-α-π)tan(α-2π)

查看答案和解析>>

科目:高中数学 来源: 题型:

若{an}是无穷等比数列,则“首项a1>0,公比0<q<1”是“数列{an}存在最大项”的.
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线过点(
3
,2),且它的渐近线方程是y=±2x,则此双曲线的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆γ:
x2
a2
+y2
=1(常数a>1)的左顶点R,点A(a,1),B(-a,1),O为坐标原点;
(1)若P是椭圆γ上任意一点,
OP
=m
OA
+n
OB
,求m2+n2的值;
(2)设Q是椭圆γ上任意一点,S(3a,0),求
QS
QR
的取值范围;
(3)设M(x1,y1),N(x2,y2)是椭圆γ上的两个动点,满足kOM•kON=kOA•kOB,试探究△OMN的面积是否为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+cosx-(
6
π
-
9
2
)x的导数为f′(x),且数列{an}满足an+1+an=nf′(
π
6
)+3(n∈N*).
(1)若数列{an}是等差数列,求a1的值:
(2)若对任意n∈N*,都有an+2n2≥0成立,求a1的取值范围.

查看答案和解析>>

同步练习册答案