分析 由已知向量$\overrightarrow{n}$=(1,-2),求得$|\overrightarrow{n}|$,结合向量平移前后模不变得答案.
解答 解:∵$\overrightarrow{n}$=(1,-2),∴|$\overrightarrow{n}$|=$\sqrt{{1}^{2}+(-2)^{2}}=\sqrt{5}$,
把向量$\overrightarrow{n}$=(1,-2)按向量$\overrightarrow{a}$=(1,-1)平移得到向量$\overrightarrow{m}$,
则$|\overrightarrow{m}|=|\overrightarrow{n}|$,
∴$|\overrightarrow{m}|=\sqrt{5}$.
故答案为:$\sqrt{5}$.
点评 本题考查平面向量的数量积运算,考查了向量模的求法,关键是掌握向量平移前后模不变,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | (¬p)∧q | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 100 | B. | 120 | C. | 300 | D. | 600 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{4}{9}$ | C. | 1 | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{7}$,$\frac{1}{2}$) | B. | (-∞,-$\frac{1}{7}$)∪($\frac{1}{2}$,+∞) | C. | [-$\frac{1}{7}$,$\frac{1}{2}$) | D. | (-$\frac{1}{7}$,$\frac{1}{2}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com