精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥,底面为菱形, 平面 分别是的中点.

(Ⅰ)证明:

(Ⅱ)若上的动点, 与平面所成最大角的正切值为,求二面角的余弦值.

【答案】(1)见解析(2)

【解析】试题分析:(Ⅰ)由条件,可证菱形中, ,再由线面垂直可得线线垂直得出,进一步得出平面,再由线面垂直的性质,可证线线垂直 (Ⅱ)由所给条件,建立以为坐标原点空间直角坐标系,写出空间各点坐标,求出二面角的二面的法向量,由法向量的夹角与二面角之间的关系求出其余弦值.

试题解析:(Ⅰ)证明:由四边形为菱形, ,可得为正三角形.

因为的中点,所以

,因此

因为平面 平面,所以

平面 平面

所以平面.又平面,所以

(Ⅱ)解:设 上任意一点,连接

由(Ⅰ)知平面 与平面所成的角.

中, ,所以当最短时, 最大,

即当时, 最大.此时

因此.又,所以,所以

方法1:因为平面 平面

所以平面平面.过,由面面垂直的性质定理,

平面,过,连,则,此时平面

显然,则为二面角的平面角,

中,∵,∴

中,∵,又的中点,∴

因此在中, ,又

中, ,即所求二面角的余弦值为

方法2:由(Ⅰ)知两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,

分别为的中点,所以 ,所以

设平面的一法向量为,则 因此

,则,因为 ,所以平面

为平面的一法向量.又,所以.因为二面角为锐角,所以所求二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 .

(1)求证: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数f(x)与g(x)的图象相同的是(
A.f(x)=x,g(x)=( 2
B.f(x)=x2 , g(x)=(x+1)2
C.f(x)=1,g(x)=x0
D.f(x)=|x|,g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,的中点,将沿折起,使得平面.

(Ⅰ)求证:平面平面

(Ⅱ)若的中点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数y= (m∈Z)的图象与x轴,y轴没有交点,且关于y轴对称,则m=(
A.1
B.0,2
C.﹣1,1,3
D.0,1,2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和直线

1求证:不论取什么值,直线和圆C总相交;

(2)求直线被圆C截得的最短弦长及此时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校对高二年级选学生物的学生的某次测试成绩进行了统计,随机抽取了名学生的成绩作为样,根据此数据作出了频率分布统计表和频率分布直方如下

(1)求表中的值和频率分布直方图中的值;

(2)如果用分层抽样的方法,从样本成绩在的学生中共抽取人,再从人中选人,

求这人成绩在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解消费者购物情况某购物中心在电脑小票中随机抽取张进行统计,将结果分成6组,分别是: ,制成如下所示的频率分布直方图(假设消费金额均在元的区间内).

1)若在消费金额为元区间内按分层抽样抽取6张电脑小票,再从中任选2张,求这2张小票来自元和元区间(两区间都有)的概率;

(2)为做好春节期间的商场促销活动,商场设计了两种不同的促销方案.

方案一:全场商品打八五折.

方案二:全场购物满100元减20元,满300元减80元,满500元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析:哪种方案优惠力度更大,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的极坐标方程为,圆与直线交于两点,点的直角坐标为

(1)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;

(2)求的值.

查看答案和解析>>

同步练习册答案