精英家教网 > 高中数学 > 题目详情

随着机构改革工作的深入进行,各单位要减员增效。有一家公司现有职员人,(,且为偶数),每人每年可创利万元。据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年可多创利万元,但公司需支付下岗职员每人每年万元的生活费,并且该公司正常运转所需人数不得小于现有员工的,为获得最大的经济效益,该公司应裁员多少人?

当现有职工人数在140到280人之间时,则裁员人;当现有职工人数在280到420人之间时,则裁员人.

解析试题分析:设裁员人,获得效益
,

   
由题有
时,,不合题意;
时,即时,当时取得最大收益;
时,即时,当时取得最大收益.
综上,当现有职工人数在140到280人之间时,则裁员人;当现有职工人数在280到420人之间时,则裁员人.
考点:函数模型,二次函数的图象和性质。
点评:中档题,作为函数的应用问题,要通过“审清题意,设出变量,列出关系,解决问题,作出结论”等步骤。研究二次函数的最值,要关注图象的对称轴与给定区间的相对位置,最值可能在对称轴处、区间的端点处取到。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,函数,记.
(Ⅰ)求函数的定义域的表达式及其零点;
(Ⅱ)若关于的方程在区间内仅有一解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(Ⅰ)求函数的定义域;
(Ⅱ)若存在实数满足,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的定义域,并判断的奇偶性;
(2)用定义证明函数上是增函数;
(3)如果当时,函数的值域是,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数对于任意的满足.
(1)求的值;
(2)求证:为偶函数;
(3)若上是增函数,解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过4(尾/立方米)时,的值为(千克/年);当时,的一次函数;当达到(尾/立方米)时,因缺氧等原因,的值为(千克/年).
(1)当时,求函数的表达式;
(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2+2x+c(a、c∈N*)满足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若对任意的实数x∈,都有f(x)-2mx≤1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(为实数,,),
(Ⅰ)若,且函数的值域为,求的表达式;
(Ⅱ)在(Ⅰ)的条件下,当时,是单调函数,求实数的取值范围;
(Ⅲ)设,且函数为偶函数,判断是否大于

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

江苏某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为平方米,且高度不低于米,设防洪堤横断面的腰长为米,外周长(梯形的上底线段BC与两腰长的和)为米.

(1)求关于的函数关系式,并指出其定义域;
(2)要使防洪提的横断面的外周长不超过10.5米,则其腰长应在什么范围内?

查看答案和解析>>

同步练习册答案