精英家教网 > 高中数学 > 题目详情
f(x)是定义在D上的函数,若存在区间[m,n]⊆D,使函数f(x)在[m,n]上的值域恰为[km,kn],则称函数f(x) 是k型函数.给出下列说法:①f(x)=3-
4
x
不可能是k型函数;
②若函数y=-
1
2
x2+x是3型函数,则m=-4,n=0;
③设函数f(x)=x3+2x2+x(x≤0)是k型函数,则k的最小值为
4
9

④若函数y=
(a2+a)x-1
a2x
(a≠0)是1型函数,则n-m的最大值为
2
3
3

下列选项正确的是(  )
A、①③B、②③C、②④D、①④
考点:命题的真假判断与应用,函数的值域
专题:简易逻辑
分析:根据题目中的新定义,结合函数与方程的知识,逐一判定命题①②③④是否正确,从而确定正确的答案.
解答: 解:对于①,f(x)的定义域是{x|x≠0},且f(2)=3-
4
2
=1,f(4)=3-
4
4
=2,
∴f(x)在[2,4]上的值域是[1,2],f(x)是
1
2
型函数,
∴①错误;
对于②,y=-
1
2
x2+x是3型函数,即-
1
2
x2+x=3x,解得x=0,或x=-4,∴m=-4,n=0,
∴②正确;
对于③,f(x)=x3+2x2+x(x≤0)是k型函数,则x3+2x2+x=kx有二不等负实数根,
即x2+2x+(1-k)=0有二不等负实数根,
1-k>0
4-4(1-k)>0
,解得0<k<1,
∴③错误;
对于④,y=
(a2+a)x-1
a2x
(a≠0)是1型函数,即(a2+a)x-1=a2x2,∴a2x2-(a2+a)x+1=0,
∴方程的两根之差x1-x2=
(x1+x2)2-4x1x2
=
(
a+1
a
)2-4•
1
a2
=
1+
2
a
+
1
a2
-
4
a2

=
1+
2
a
-
3
a2
2
3
3
,即n-m的最大值为
2
3
3
,∴④正确.
综上,正确的命题是②④.
故选:C.
点评:本题是新定义题,考查了命题的真假判断与应用,考查了在新定义下函数的定义域、值域问题以及解方程的问题,是中档题也是易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知定点E(-1,0),F(1,0),动点A满足|AE|=4,线段AF的垂直平分线交AE于点M.
(1)求点M的轨迹C1的方程;
(2)抛物线C2:y2=4x与C1在第一象限交于点P,直线PF交抛物线于另一个点Q,求抛物线的POQ弧上的点R到直线PQ的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C1
x=t
y=2t
(t为参数)与曲线C2:ρ=2相交构成的弦长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

把2x3-5x2-9x+18=0化成(x-x1)(ax2+bx+c)=0的形式,再化成a(x-x1)(x-x2)(x-x3)=0的形式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆的方程为
x2
a2
+
y2
b2
=1(a>b>0),过右焦点且不与x轴垂直的直线与椭圆交于P,Q两点,若在椭圆的右准线上存在点R,使△PQR为正三角形,则椭圆的离心率的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x+y≥3
x-y≥-1
2x-y≤3
,则2x+3y的最小值为(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log2x(2<x≤16)的值域是(  )
A、(1,4)
B、(1,4]
C、(0,∞)
D、(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1的点到焦点的最短距离为2,点P(3,4)在双曲线C的渐近线上,则双曲线C的方程为(  )
A、
x2
16
-
y2
9
=1
B、
x2
9
-
y2
16
=1
C、
x2
4
-
y2
3
=1
D、
x2
3
-
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2x+2
3
sinxcosx(x∈R),当x∈[0,
π
2
]时,求函数f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案